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Abstract

In this thesis we will study the cobordism ring of oriented manifolds. We introduce the basic defini-
tions of smooth manifolds, and we describe the cobordism equivalence class on oriented and unoriented
manifolds. We show the set of equivalence classes of manifolds up to cobordism is a ring with the
disjoint union and cartesian product as operations. Given this we give an explicit calculation of the
oriented cobordism group in dimension 0,1,2 using the classification of oriented manifolds in these
dimensions. For dimension 3 we briefly describe an inductive method by surgery to show every ori-
ented 3-manifold is nulcobordant.
The goal of the rest of the thesis is to classify the oriented cobordism group up to torsion elements
in every higher dimension. We introduce vector bundles and show the tautological bundles classify
vector bundles. Characteristic classes of vector bundles are introduced, especially the Stiefel-Whitney
classes, Chern classes and Pontryagin classes. From this we introduce Pontryagin numbers, and show
they are group homomorphisms from the oriented cobordism group to the integers. We calculate
the Pontryagin numbers of products of even complex projective spaces, and show there are no linear
relations between them in the oriented cobordism ring.
We then describe the Pontryagin-Thom construction and René Thom’s proof that the cobordism
groups are equal to the homotopy groups of the Thom spectrum. Using this we show the rank of
the cobordism group is equal to the rank the subgroup generated by the products of even complex
projective spaces, which shows this subgroup contains all non-torsion elements.
As an application of this classification, we prove the Hirzebruch signature theorem by only checking
it holds on even complex projective spaces. Lastly as an application of the application, we find a
criteria for whether #g

(
S4n+2 × S4n+2

)
can have a complex structure on the tangent bundle, by

using the Hirzebruch signature theorem.
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1 Introduction

As a general goal of topology, we would like to classify shapes up to a certain structure. In the case
of smooth manifolds however the classification up to diffeomorphism is not feasible. Instead based on
earlier work of Henri Poincaré, René Thom and Lev Pontryagin defined the cobordism group, where
two closed manifolds are cobordant if their disjoint union is a boundary of a compact manifold. It
follows that a closed manifold is cobordant to the empty set only if it is a boundary of a compact
manifold. Classifying this equivalence relation then gives the answer to the question of whether or not
closed manifolds are always boundaries of compact manifolds. The concept of oriented cobordism was
similarly defined requiring the manifolds to be oriented, and the boundary orientation to correspond
to the orientation of the closed manifolds.
From calculating the cobordism group in lower dimensions, it is clear that this relation is not nearly
as strict as diffeomorphism as all closed oriented manifolds of dimension 1 to 3 are the oriented
boundary of a manifold. However the cobordism relation still maintain some important invariants of
manifolds as signature for example.
Pontryagin showed that the Pontryagin numbers arising from Pontryagin classes of vector bundles,
would vanish for oriented nulcobordant manifolds, connecting the theory of characteristic classes and
cobordisms. Thom proved that the cobordism groups were isomorphic to the homotopy groups of a
certain sequence of spaces called the Thom spectrum. From this Thom could calculate the cobor-
dism ring up to torsion in both the oriented and unoriented case. In 1959 C.T.C Wall computed the
cobordism ring completely.
Friedrich Hirzebruch would use this result to relate the signature of topological manifolds to the
Pontryagin numbers of smooth manifolds.

This thesis heavily relies on John Milnor’s excellent exposition Characteristic Classes, whose own
contribution to the field can not be overstated.

2 Introduction to Manifolds

We will recall the basic definitions and facts about manifolds.

Definition 2.1 (Topological Manifolds). A topological manifold M of dimension n is a topological
space which is locally homeomorphic to Rn, Hausdorff and second-countable. By locally homeomorphic
we mean, there exist for every x ∈M an open neighborhood x ∈ U with a homeomorphism ϕ : U → Rn.
Such a map is called a local homeomorphism.

Definition 2.2 (Topological Manifolds with boundary). A topological manifold of dimension n with
boundary M is defined similarly, except that it is locally homeomorphic to an open subset of [0,∞)×
Rn−1.
A point x ∈ M lies in the boundary, denoted ∂M , if there exists a local homeomorphism ϕ : U →
[0,∞)× Rn−1 with x ∈ ϕ−1({0} × Rn−1)

Notation 2.3 (Notation for Manifolds). We will sometimes denote topological manifolds as topolog-
ical manifolds without boundary, when we want to distinguish them from topological manifolds with
boundary. We will also call a manifold of dimension n, a n-manifold. To denote an arbitrary mani-
fold, with or without boundary, we will usually use letters M,N,W . The boundary of a manifold M
is denoted by ∂M .
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If x ∈M is in the preimage of {0}×Rn−1 in one of these local homeomorphism, then it holds for
every such homeomorphism[2, p. 29]1. If there exist a local homeomorphism ϕ : U → [0,∞)×Rn−1

such that x ∈ ϕ−1({0} × Rn−1), then for every other local homeomorphism ψ : V → [0,∞) × Rn−1

with x ∈ V , x ∈ ψ−1({0}×Rn−1). The boundary ofM , ∂M is a topological (n−1)-manifold without
boundary, While the interior Int M is a topological n-manifold without boundary.

We will restrict our attention to manifolds with a smooth structure. The presence of smooth
functions give rise to techniques from Morse theory, and the notion of the tangent bundle which we
define later.

Definition 2.4 (Atlas & Smooth Manifolds). A smooth atlas on a manifold M is a collection of local
homeomorphisms from open subsets ϕ : U → V where U is open in M and V open in Rn, called
coordinate charts, such that the sources of the coordinate charts covers the whole manifold. The
charts have to be smoothly compatible in the sense that for two charts ϕ : U → V and ψ : U ′ → V ′,
the transition function ϕU∩U ′ ◦ ψ−1

U∩U ′ : ψ(U ∩ U ′) → ϕ(U ∩ U ′) between them is a smooth functions
between open subsets of Rn. An atlas is maximal if every local homeomorphism which has smooth
transition functions with the elements of the atlas, is included in the atlas.

A smooth manifold is a topological manifold endowed with a smooth atlas. An atlas on a manifold
with boundary is defined similarly, with coordinate charts ϕ : U → [0,∞) × Rn−1, and transition
functions between ϕ : U → [0,∞)× Rn−1 and ψ : V → [0,∞)× Rn−1, ϕU∩V ◦ ψ−1

U∩V being a smooth
map.
A map f : A→ B for arbitrary subsets A ⊂ Rn, is smooth if for every x ∈ A there exist a neighborhood
x ∈ Ux such that fA∩Ux can be extended to a smooth map on Ux.

Definition 2.5 (Smooth maps between Smooth Manifolds). Let M,N be smooth manifolds. A map
F : M → N if for every x ∈ M , we can choose charts ϕ with source x ∈ U ⊂ M and ψ with source
f(x) ∈ U ′ ⊂ N , such that the map ψ ◦F ◦ (ϕU∩F−1(U ′))

−1 is a smooth map of open subsets of Rn and
Rm.

From this point on will refer to smooth manifolds as just manifolds.
Another structure that can be added to an manifold is an orientation. For every point x ∈M we can
choose a coordinate chart around x, ϕ : U ∼= Rn. Based on this we can calculate Hn(M,M − x) by
excision on (M,U,M − x)

Hn(M,M − x) ∼= Hn(U,U − x) ∼= Hn(Rn,Rn − ϕ(x)) ∼= Z,

we can conclude that Hn(M,M − x) has two generators.
We want to be able to make a choice of generator for every x ∈M . We will denote such a collection
of generators by µx ∈ Hn(M,M − x) for all x ∈ M . Given a compact coordinate ball ϕ : B → Dn

with x, y ∈ B, since B is contractible we get

Hn(M,M − x) ∼= Hn(M,M −B) ∼= Hn(M,M − y),

given by the inclusion (M,M − B) → (M,M − x). If a choice of generators send µx to µy through
the above isomorphism for every compact coordinate ball B and x, y ∈ B then the choice is said to
be continuous.

Definition 2.6 (Orientation). An orientation on a manifold M is a continuous choice of generators
µx ∈ Hn(M,M − x). An oriented manifold is a manifold M together with an orientation on M.
An orientation on a manifold with boundary M is an orientation on the interior Int M . Similarly an
oriented manifold with boundary is a manifold with boundary together with an orientation on it.
If there exist an orientation on a manifold it is orientable.

If a manifold M is smooth, then the orientation for a point x ∈M can be given by an orientation
on the tangent space[5, p. 122 ].
We can get an orientation on the tangent space2 by assigning an ordered basis to each fiber of a
manifold M . This pointwise orientation on the whole tangent space is continuous, if every point of
M has a local oriented frame. Here a local oriented frame on a manifold is an ordered set of vector

1This proof is only for the case of smooth manifolds, introduced below but we will only need it in that case.
2The reader can read the definition of the tangent space in the Chapter about Vector Bundles.

5



fields (X1, X2, ..., Xn) on a subset U , such that for each u ∈ U , (X1|u, X2|u, ..., Xn|u) is an oriented
basis. Remember: if we permute an ordered basis, we get another oriented basis if the permutation
is even, and reverse oriented if it is odd.

For S1 we have a global framing given by the vector field, which sends eiθ ∈ S1 to ei(θ+
π
2 ) ∈ TeiθS

1.
This determines the orientation on S1. For S2 such a global framing does not exist, but there still
exist local frames, giving an orientation on S2.

3 Cobordisms

We will define closed manifolds to be compact manifolds without boundary. We now have the tools
to state our main question of this project in a general way: Which closed manifolds are the boundary
of compact manifolds?

Definition 3.1 (Closed Manifolds). A closed manifold M is a compact manifold without boundary.

By restricting our definitions to compact manifolds, we avoid trivial examples such as any closed
manifold M being the boundary of M × [0,∞).

Definition 3.2 (Cobordism). A cobordism is a triple (W,M,N) of W a compact (n + 1)-manifold
and M,N closed n-manifolds, where ∂W = M ⨿N . Two manifolds M,N are cobordant if there exist
a cobordism (W,M,N).

Lemma 3.3. Cobordism gives an equivalence relation on closed manifolds.

Proof. We let M ∼ N if they are cobordant. We will have to show that it is reflexive, symmetric and
transitive. We denote the closed unit interval by I.
Since the disjoint union is symmetric, a cobordism (W,M,N) corresponds to (W,N,M), showing that
if M ∼ N then N ∼M . It is reflexive since for any closed manifold M, we have the manifold M × I
with boundary M ⨿M , so M ∼ M . Lastly to show transitivity, if we assume we have cobordisms
(W,M,N) and (V,N,D), we can glue W and V along their common boundary N . The proof that
gluing gives a well defined smooth manifold up to diffeomorphism can be found here [2, p. 224]. This
new manifold gives a cobordism (W ∪N V,M,D), showing that M ∼ D, given M ∼ N and N ∼ D.

Since cobordisms define an equivalence relation, we can take the equivalence classes of closed
n-manifolds up to cobordisms. If there is only one equivalence class in this set, then all manifolds are
cobordant to the empty manifold, implying that they are boundaries.
We can give the set of closed n-manifolds up to cobordisms an abelian group structure with the disjoint
union on representatives. First we have to show it is well defined. If M ∼M ′ and N ∼ N ′ such that
there exist cobordisms (W,M,N) and (V,N,D), then we have the cobordism (W⨿V,M⨿N,M ′⨿N ′),
showing that M ⨿N ∼M ′ ⨿N ′.
The class [∅] of the empty manifold3 is the neutral element. Also since we had the cobordism
(M × I,M ⨿M, ∅) every class of a manifold is its own inverse element. This is the definition of the
cobordism group Ωn.

We have a commutative bilinear map Ωn × Ωm → Ωn+m given by the cartesian product on
representatives. This is well defined since if we have cobordisms (W,M,M ′) and (V,N,N ′) then we
have the cobordism

((W ×N) ∪M ′×N (M ′ × V ),M ×N,M ′ ×N ′),

showing that products respect equivalence classes.
Since [(M ⨿N)×D] = [(M ×D)⨿ (N ×D)] and [M ×N ] = [N ×M ], we get the map is symmetric
and bilinear.
We can take the direct sum of all cobordism groups, denoted by Ω∗, and give it a multiplication by
the cartesian product on representatives between the summands. The multiplicative identity is the
class of the point [∗] ∈ Ω0.

3The empty manifold can be considered a smooth manifold in any dimension, by giving it an empty atlas of dimension
n.
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Recall that a Z2-algebra structure on a ring R is a ring-homomorphism Z2 → R. We have the unique
map ϕ : Z2 → Ω∗ sending [1] to [∗], since [∗] + [∗] = [∅]. Thus Ω∗ is a graded symmetric Z2-algebra.

3.1 Oriented Cobordisms

We can also make the same constructions for oriented manifolds. An oriented manifold with boundary
has an induced canonical orientation on the boundary. The induced orientation is defined such that
for every point x ∈ ∂M with an outward pointing tangent vector v, (v1, v2, ..., vn−1) is an ordered
basis of Tx∂M with the induced orientation, if and only if (v, v1, v2, ..., vn−1) is an ordered basis
TxM . In the case of the boundary orientation of a 1-manifold M , x ∈ ∂M is positively oriented if
an outward pointed tangent vector is an oriented basis in M , and negatively oriented if the outward
pointed tangent vector gives an unoriented basis.
Based on this we can define an oriented cobordism. Our only difference is, that one of the orientations
will be switched, to make sure our definitions work.

Definition 3.4 (Oriented Cobordism). An oriented cobordism is a triple (W,M,N) of W a compact
oriented (n + 1)-manifold and M,N closed oriented n-manifolds, where ∂W = M ⨿ −N , with the
induced boundary orientation agreeing with orientation on M ⨿ −N given by the orientation of M
and −N (here −N is the manifold N with reverse orientation). Two manifolds M,N are oriented
cobordant if there exist an oriented cobordism (W,M,N).

Oriented cobordism also gives an equivalence relation on oriented manifolds, which we will show.
Note we have a canonical orientation on a product of oriented manifolds, such that if (x1, ..., xm) is
an orientend basis for TxM and (y1, ..., yn) is for TyN then (x1, ..., xm, y1, ..., yn) is an oriented basis
for T(x,y)M ×N .
If we take the oriented product N ×M instead, we get a basis (y1, ..., yn, x1, ..., xm).

Lemma 3.5. For an oriented m-manifold M and an oriented n-manifold N , the map swapping
coordinates M ×N → N ×M is orientation-preserving if and only if mn is even.

Proof. Let (x1, ..., xm) be an orientend basis for TxM and (y1, ..., yn) be an oriented basis for TyN .
Then we have the oriented basis (y1, ..., yn, x1, ..., xm) for Ty,x(N ×M). By applying the permutation
(1 2 ... m + n)m to (y1, ..., yn, x1, ..., xm), the indices gets shifted to the right m times, giving the
ordered basis (x1, ..., xm, y1, ..., yn). We have

(1 2 ... m+ n) = (1 m+ n)(1 m+ n− 1)...(1 2)

So (1 2 ... m+ n)m consists of (m+ n− 1) ·m swaps. Therefore it takes m2 +mn−m ≡ mn mod 2
swaps to get the same basis as Tx,y(M ×N). It follows that the map is orientation-preserving if and
only if mn is even.

We have the standard orientation on I which corresponds to a tangent vector, in the direction of 1.

Lemma 3.6. Oriented cobordism gives a equivalence relation on oriented closed manifolds.

Proof. For any oriented manifold M , I × M has the oriented boundary M ⨿ −M . This holds
since, if (v1, ..., vn) is an oriented basis of a point m ∈ M then (v, v1, ..., vn) is an oriented basis
of (0,m) ∈ 0 ×M , where v is tangent vector of I going to 1. But since the boundary orientation is
given by having an outward pointing vector in the first coordinate, the orientation has to be swapped
on M to get an oriented basis on 0×M . However on 1×M , outward pointing vectors are oriented
at 1 ∈ I, such that the boundary orientation will agree with the original orientation of M . Thus we
have the reflexive property from (I ×M,M,M).
If we have an oriented cobordism (W,M,N) then (−W,N,M) will also be an oriented cobordism,
since the boundary orientation will be swapped, giving the symmetric property.

Given two oriented cobordisms (W,M,N), (V,N,D), W and V can be attached along N . The
gluing will happen along an orientation reversing map, which ensures that W ∪N V is an oriented
manifold, such that the inclusions of W,V into W ∪N V are orientation-preserving. This gives an
oriented cobordism (W ∪N V,M,D) showing transitivity, and such that it is an equivalence relation.
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As before we can take the set of equivalence classes of oriented n-manifolds with the disjoint union
as group operation: This is the oriented cobordism group Ω+

n , with the inverse of a manifold given
by the same manifold with reverse orientation, and neutral element [∅] with the unique orientation.
As in the unoriented case, Ω+

∗ is a graded ring with the cartesian product, with identity element
[∗] with the positive orientation. From our above considerations the ring is graded commutative,
meaning [N ×M ] = [(−1)nmM ×N ].

3.2 Calculation of Oriented Cobordism groups

Since the definition of the cobordism groups depends on all closed manifolds, or all oriented closed
manifolds in the oriented case, they are not easy to calculate. In dimension 0,1 and 2, however we have
simple classifications up to (orientation-preserving) diffeomorphism of (oriented) closed manifolds,
which is a finer equivalence class than (oriented) cobordism.

Lemma 3.7. If two (oriented) manifolds are (orientation-preserving) diffeomorphic, then they are
(oriented) cobordant

Proof. If M and N are oriented diffeomorphic, then glue the manifolds I × M and I × N along
{1}×M and {0}×N by the diffeomorphism. Since {1}×M has the orientation −M they are glued
along an orientation reversing diffeomorphism, which make it so (I ×M) ∪−M∼N (I × N) has the
orientation of (I ×M) and (I ×N) on each of its parts. The boundary of this is M ⨿−N , showing
M and N are oriented cobordant.

The same proof works in the unoriented case, when we take our constructions to be unoriented.

Given this we can calculate the groups in these 3 cases. For Ω+
0 the closed manifolds are just

a finite amount of points each attached a sign which is the orientation. The sums of these signs
are invariant under cobordism, since any cobordism between 0-manifolds consists of line segments
between an equal amount of positive and negative points, since the boundary orientation on I gives
the negative orientation at 0 and positive at 1.

Definition 3.8 (Total sign). The total sign of an oriented 0 manifold is the integer a − b, where a
is the number of positive oriented points, and b is the amount of negative oriented points.

It follows that M ∼ N if and only if M ⨿−N ∼ ∅, then the total sign of M ⨿−N is 0, meaning
that M and N have the same total sign. Therefore Ω+

0 = Z, by sending a class of oriented points to
its total sign.

Ω+
1 and Ω+

2 are both easier, since the only closed connected orientable manifolds are circles and
genus-g surfaces, which are both boundaries of D2 and a genus-g handlebody respectively, showing
both groups are 0.

3.2.1 Calculation of Ω+
3

In dimension 3 we will choose a different strategy for finding the cobordism group, than the previous
examples. Rather given an arbitrary closed oriented 3-manifold, we will describe an algorithm to
alter it by surgery without changing its cobordism class. This way we can simplify any manifold into
the 3-sphere, which is a boundary, showing that Ω+

3 = 0.

To do this, first we need a way to write our manifolds in a more systematic way. Even though
we don’t have a classification available, we have the next best thing, a decomposition. Through
techniques of Morse Theory, we can decompose any closed orientable 3-manifold into two genus-g
handlebodies glued together. Such a decomposition is called a Heegaard diagram[3, p. 181].

Given this by performing surgery along a specific curve, we get a cobordism with a manifold
consisting of two genus-(g− 1) handlebodies[6]. Using this inductively we get a cobordism to a union
of two genus-0 handlebodies which is just S3, which is nul-cobordant. It follows that Ω+

3 = 0.

Even though we have been able to calculate the first oriented cobordism groups, we would like to
be able to describe the structure more for all dimensions. But for this to possible we need to develop
some machinery.
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4 Vector Bundles

Our study of cobordisms leads us to vector bundles of smooth manifolds. We will primarily work with
vector bundles with 3 different kinds of structures: oriented, unoriented and complex vector bundles.

Definition 4.1 (Real Vector Bundles). A real n-vector bundle ξ is a tuple (B,E, π) consisting of
a base space B, a total space E and a surjection π : E → B such that the fibers have a real vector
space structure of dimension n, and for each point b ∈ B there exist a neighborhood b ∈ U ⊆ B with
local trivializations t : U × Rn → π−1(U), which is, when restricted to a point in U, a vector space
isomorphism.

Definition 4.2 (Complex Vector Bundles). A complex n-vector bundle ω is a tuple (B,E, π) con-
sisting of a base space B, a total space E and a surjection π : E → B such that the fibers have a
complex vector space structure of dimension n, and for each point b ∈ B there exist a neighborhood
b ∈ U ⊆ B with local trivializations t : U × Cn → π−1(U), which is, when restricted to a point in U,
a complex vector space isomorphism.

Definition 4.3 (Oriented Vector Bundles). An oriented n-vector bundle ω is a real vector bundle,
where the fibers are oriented vector fields and the local trivializations t : U×Rn → π−1(U) are oriented
vector space isomorphism when restricted to a fiber.

Notation 4.4. We will usually denote arbitrary real bundles, unoriented or oriented, by ξ or η. The
total space will be denoted E(ξ), the base space by B(ξ) and the surjection by π or πξ unless we state
otherwise. If the given bundle is clear, we will refer to the spaces as E,B.

For complex bundles we will use ω with total space E(ω), base space B(ω) and surjection π.

4.1 Examples of vector bundles

The simplest example of a vector bundle is the trivial n-bundle ϵn, Rn ×B which is globally trivial.
All bundles look like this bundle locally from our definition, but their global structure can vary. A
vector bundle is trivial, if and only if there exist n cross-sections that are linearly independent in each
fiber[5, p. 18]. There also exist an oriented trivial n-bundle and a complex trivial n-bundle.

The tangent bundle is another important example defined for all smooth manifolds.

Definition 4.5 (Tangent Bundle). The tangent bundle on a n-manifold M associates to each point
in M the space of the tangents vectors, which is a n-dimensional vector space.

For the tangent bundle on a n-manifold M , we use both the notation TM , τM or τn. There
exist local trivilizations π : Rn × U → π−1(U) based on charts of the manifold ϕ : Rn → U . The
tangent bundle on S2n gives us our first example of a non-trivial bundle, since the hairy ball theorem
shows every cross section will be 0 somewhere. Smooth manifolds will be called parallelizable if their
tangent bundle is trivial. A manifold together with a complex structure on the tangent bundle is
an almost complex manifold. Cn has a canonical complex structure on the tangent bundle by the
canonical homeomorphism TcCn ∼= Cn.

Definition 4.6 (Complex Manifold). A 2n-manifold M with a complex structure on the tangent
bundle is a complex n-manifold, if it has an atlas of homeomorphisms from open subsets U ∈ M to
V ∈ Cn, such that the map on tangent spaces of these homeomorphisms are complex linear.

An important class of complex manifolds are the complex projective spaces CPn.
Another class of bundles are the tautological bundles on Grassmanians, which have an unoriented,
oriented and complex version.

Definition 4.7 (Oriented Tautological Bundles). The unoriented tautological bundle γnk is a real n-
bundle on the unoriented real Grassmanian Gn(Rn+k). It consists of pairs (x, v) where x is a n-plane
in Rn+k and v is a vector in x.

Definition 4.8 (Unoriented Tautological Bundles). The unoriented tautological bundle γ̃nk is an

oriented n-bundle on the oriented real Grassmanian G̃n(Rn+k). It consists of pairs (x, v) where x is
an oriented n-plane in Rn+k and v is a vector in x.
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Definition 4.9 (Complex Tautological Bundles). The complex tautological bundle γnk is a complex
n-bundle on the complex Grassmanian Gn(Cn+k). It consists of pairs (x, v) where x is a complex
n-plane in Cn+k and v is a vector in x.

Even though the complex and unoriented tautological bundle are denoted the same, the distinc-
tion will be made clear from context.
In the unoriented case γ11 we get the ”simplest” non-trivial vector bundle, also called the Möbius
bundle, as the total space is a Möbius band while the base is RP1 ∼= S1.

4.2 Maps between bundles

We can define a map between vector bundles ξ, η as a pair of maps g : E(ξ) → E(η), f : B(ξ) → B(η)
which satisfy the commutative diagram

E(ξ) E(η)

B(ξ) B(η),

g

f

(1)

where we require g to restrict to linear isomorphisms on the fibers of the projection map. If we have
a bundle map on the form (g, IdB), then we will say the two bundles are isomorphic, and this will be
the equivalence relation we will study vector bundles up to.
We will denote the set of isomorphism classes of real n-vector bundles of M by Bn(M). For oriented
and complex they will be denoted B+

n (M) BC
n(M) respectively.

If ξ, η are bundles over a space M with E(ξ) ⊂ E(η), then ξ is a subbundle of η. If we instead have
two bundles ξ, η defined over the same space M , with a map g : E(ξ) → E(η) satisfying the diagram

E(ξ) E(η)

M,

g

with g being linear and injective on fibers, then ξ is isomorphic to a subbundle of η. We will usually
describe the bundle map, by describing the map on fibers. If this description depends on local
trivializations, we have to ensure it is independent of choice of local trivialization.

4.3 Operations on vector bundles

The vectors bundles we will work with in this project, will all be constructed from the tangent bundle,
trivial bundle and the tautological bundle. From these 3 bundles we can generate other bundles of
interest. First we have the product bundle of the cartesian product of base spaces.

Definition 4.10 (Product Bundle). Given two unoriented bundles ξ with projection π1, and η with
projection π2, the product bundle ξ × η is the bundle (B(ξ) × B(η), E(ξ) × E(η), π1 × π2), with the
fibers having the vector space structure of the product of the fibers of ξ and η.
If the bundles are oriented, the product fiber has the product orientation, and if it is complex, the
product fiber has product structure of complex vector spaces.

We also have the pullback bundle.

Definition 4.11 (Pullback Bundle). Given a bundle ξ and a map f : A→ B(ξ) we have the pullback.

E(f∗(ξ)) E(ξ)

A B(ξ).

πf π

f

Using this we can define the pullback bundle f∗(ξ) as the tuple (A,E(f∗(ξ)), πf ).

10



Remember the pullback in topology is the subspace of A×E(ξ) consisting of pairs (a, v) such that
f(a) = π(v), together with subspace topology of A × E(ξ). The fiber π−1

f (a) will then be canoni-

cally identified with the fiber of the image π−1(f(a)) and will be given the same vector space structure.

Given two vector bundles ξ, ϵ on the same base space B, we can combine the product bundle with
the pullback bundle on the diagonal map ∆ : B → B × B to get the Whitney sum ξ ⊕ ϵ of the two
bundles.

Another example of a pullback bundle is the restriction of a bundle ξ to ξ|A, given by an inclusion
A ↪−→ B(ξ).
We have the following lemma connecting the pullback bundle to bundle maps.

Lemma 4.12. There exists a bundle map (g, f) from η to ξ if and only if η is isomorphic to f∗(ξ)

Proof. The diagram of the pullback bundle gives a bundle map (f∗, f) from f∗(ξ) too ξ. Any bundle
that is isomorphic to f∗(ξ) also has a bundle map by composing the isomorphism with (f∗, f).
On the other hand if we have a bundle map (h, f) : η → ξ, then we get a commutative diagram from
the universal property of pullbacks.

E(η)

E(f∗(ξ)) E(ξ)

B(η) B(ξ).

f∗

f

h

∃!ϕ

The pair (ϕ, IdB(η)) is a bundle map from η to f∗(ξ), since on fibers x ∈ B(η), ϕx = (f∗x)
−1 ◦ hx it

is a composition of linear isomorphims. It follows η and f∗(ξ) are isomorphic bundles.

Lastly we have the orthonormal bundle, but to define this we need an inner product on fibers.
The following definition gives us this.

Definition 4.13 (Euclidean Bundle). For a bundle ξ we have the pullback E(ξ) ×B E(ξ) of the
diagram

E(ξ)×B E(ξ) E(ξ)

E(ξ) B.

π

π

If a continous map q : E(ξ) ×B E(ξ) → R is an inner product when restricted to a fiber Fb × Fb,
then q is an euclidean structure on ξ. A bundle ξ together with an eculidean structure is an euclidean
bundle.

A trivial bundle with a canonical trivialization has a canonical euclidean structure, given by the
usual inner product on each fiber.

Lemma 4.14. Every bundle ξ over a paracompact space has an euclidean structure.

Proof. Let (Ui)i∈I be an open cover of ξ, such that the bundle is trivial over each Ui. Then since the
base space B is paracompact, there exists a partitions of unity (ψi)i∈I of (Ui). Since the bundle is
trivial over each Ui, we can choose inner products qi : E(ξ)|Ui

× E(ξ)|Ui
→ R. Then

q(e, e′) =
∑
i∈I

ψi(π(e)) · qi(e, e′)

is a inner product on ξ. First note it is well defined, by letting ψi · qi be equal to 0 outside of Ui
since sup ψi ⊂ Ui. Secondly it is symmetric bilinear since it is a sum of symmetric bilinear functions
when restricted to fibers. Lastly it is positive definite, since for any v ∈ E(ξ) we can chooes ψi with
ψi(π(v)) > 0. Then since qi positive definite

0 < ψi(π(v)) · qi(v, v) ≤ q(v, v)

Showing q is a inner product on ξ.
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We can now define the normal bundle.

Definition 4.15 (Normal Bundle). Given an inclusion ξ ⊂ η of a n-bundle inside an euclidean
m-bundle, the normal bundle ξ⊥ is a (m− n)-bundle, with fibers given by the orthogonal space of the
fibers of ξ inside the fibers of η.

The proof that this gives a subbundle, can be found here[2, p. 267]. The isomorphism type of
the normal bundle, does not depend on the choice of euclidean bundle.

The Whitney sum of a subbundle with its normal bundle is canonically isomorphic to the total
bundle[5, p. 28 ]

If we have an embedding of a manifold i : M → N then we have an inclusion of bundles TM ↪−→
TN|M . If TN|M has an euclidean structure, then we have the normal bundle νM of the embedding.
The tubular neighborhood theorem states there is a diffeomorphism ϕ from the total space of νM to
an open neighborhood of i(M) such that:
1) If i′ is the zero-section of M in E(νM ) then ϕ ◦ i′ = i.
2) Given the identifications α : (TE(νM ))|M

∼−→ TM ⊕ νM and β : TN|M
∼−→ TM ⊕ νM we get

Tϕ = β−1 ◦ α.
The proof of the tubular neighborhood theorem can be found here[5, p. 115].

4.4 Relations between different types of bundles

We will here describe some relations between unoriented, oriented and complex bundles. There are
forgetful functors from oriented and complex bundles to unoriented bundles, considering complex
n-bundles to be real 2n-bundles. Moreover all complex bundles have a canonical orientation.

Lemma 4.16. Any complex bundle has a canonical orientation.

Proof. Indeed if we choose a complex basis over a fiber (z1, z2, ..., zn) we have the corresponding real
basis (z1, z1i, z2, z2i, ..., zn, zni). The orientation does not depend of our choice of basis, since any
permutation of our basis, will result in an even permutation of (z1, z1i, z2, z2i, ..., zn, zni) since for
every pair of complex element swapped, we get two pairs of real elements swapped.

Based on this, we also have a forgetful functor to the oriented bundles, by forgetting the complex
structure, but maintaining the canonical orientation.

So far we have only talked about forgetting structure, but we can also get a complex bundle from
every bundle by complexification. The complexification of a real bundle ξ is a complex bundle ξ⊗C,
with fibers ξb ⊗R C. The complex structure of a complex vector bundle ω can be described by a
R-linear map on fibers J : ωb → ωb with J ◦ J(x) = −x, which corresponds to scalar multiplication
by i. For ξ ⊗C elements of the fiber can be written as (x, y) with the map J(x, y) = (−y, x) or x⊗ c
with J(x⊗ c) = x⊗ ic

If a real isomorphism ϕ of complex bundles upholds ϕ(J(x)) = J(ϕ(x)) then it is an isomorphism
of complex bundles. The conjugate bundle ω of a complex bundle ω, is the same bundle with the
complex structure given by J = −J .

Lemma 4.17. The bundle ξ ⊗ C is canonically isomorphic to ξ ⊗ C.

Proof. We have the bundle map f from ξ⊗C to ξ ⊗ C given on fibers by sending x⊗ c to x⊗ c. This
is a real bundle map since it is canonically defined, so we just need to show it respects the complex
structure, but we have

f(J(x⊗ c)) = f(x⊗ ic) = (x⊗−ic) = J(x⊗ c) = J(f(x⊗ c))

So the map f is a complex bundle map and is such an isomorphism.

If our bundle already has an orientation or complex structure, the complexification will contain
this structure, in a sense described by the two lemma below.
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Lemma 4.18. For a complex bundle ω, ω⊗C is canonically ω⊕ ω̂, where ω̂ is the complex conjugate
bundle.

Proof. For the bundle ω ⊗ C the complex structure is given by J(x, y) = (−y, x).
Meanwhile the complex structure on ωb ⊕ ω̄b is given by J(x, y) = (ix,−iy). We can see from this,
that they are not obviously isomorphic.

We can however construct a map g : ωb → ωb ⊗ C by g(a) = (a,−ia). We have

g(J(a)) = g(ia) = (ia, a) = J(a,−ia) = J(g(a)),

so the map is complex linear. We also define a map h : ω̂b → ωb ⊗ C by h(a) = (a, ia), which is also
complex linear since

h(J(a)) = h(−ia) = (−ia, a) = J(a, ia) = J(h(a)).

Based on this we can define a map g ⊕ h : ωb ⊕ ω̂b → ωb ⊗ C, which is surjective since

(a, b) = g

(
a+ ib

2

)
+ h

(
a− ib

2

)
,

which gives an canonical isomorphism of fibers not depending on trivializations, which therefore
extend to a bundle map.

Lemma 4.19. For an oriented bundle ξ, (ξ ⊗ C)R is isomorphic to ξ ⊕ ξ under an orientation

preserving map if n(n−1)
2 is even, and orientation reversing if it is odd.

Proof. Based on an ordered basis (v1, v2, ..., vn) of ξb the orientation of ξb ⊗ C is given by

(v1, v1i, v2, v2i, ..., vn, vni).

On the other hand if (v1, v2, ..., vn) induce the orientation on ξb then the orientation of ξb ⊕ iξb is
given by (v1, v2, ..., vn, v1i, v2i, ..., vni).

If we shift v1i to the left in the second basis (n−1) times, it will be in same position as in the first
basis. It will take v2i (n − 2) shifts to the left to get it to the correct position, and so on until the

two basis have the same order. From this we have swapped the orientation
∑n−1
i=0 i =

n(n−1)
2 times,

so the isomorphism preserves orientation if and only if n(n−1)
2 is even.

These result will be useful later as we will construct characteristic classes from the complexification
of a bundle.

5 The Universality of the tautological bundle

We will now show why the tautological bundles are important. This result has a version for the
oriented, unoriented and complex Grassmannian, but for the purpose of variation we will describe
the complex case.
First however we need to define the infinite Grassmannian. Notice the inclusion Cn+k ↪−→ Cn+k+1,
into the first n+ k coordinates, induces an inclusion Gn(Cn+k) ↪−→ Gn(Cn+k+1).

Definition 5.1 (Infinite Grassmannian). The complex infinite Grassmannian Gn(C∞) is the direct
limit of the inclusions Gn(Cn+k) ↪−→ Gn(Cn+k+1). The unoriented infinite Grassmannian comes form
the inclusions Gn(Rn+k) ↪−→ Gn(Rn+k+1), and the oriented comes from G̃n(Rn+k) ↪−→ G̃n(Rn+k+1).

Here we mean by C∞ the direct sum of N copies of C, such that a n-plane in C∞ lies in Cm for
m large enough.

We also have a tautological bundle γn which is defined as in the finite case.

Definition 5.2 (Tautological Bundles over infinite Grassmannians). The complex tautological bundle
γn is a complex n-bundle on the complex Grassmanian Gn(C∞), consists of pairs (x, v) where x is
an complex n-plane in C∞ and v is a vector in x.
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We denote [A,B] to be the set of equivalence classes of maps f : A→ B up to homotopy.

Theorem 5.3. For any manifold M, there is a bijection between BC
n(M) and [M,Gn(C∞)]. More

explicitly the map ϕ assigning to every homotopy class of functions f :M → Gn(C∞) the isomorphism
class [f∗(γn)], is a bijection.

We will split the proof in two lemmas.

Lemma 5.4. for every complex n-bundle ω over a paracompact space there exist a bundle map into
γn.

Proof. We will show the existence by constructing a map f̂ : E(ω) → C∞ . which is linear and
injective on the fibers of ω .
From this we can construct a bundle map, since for e ∈ E(ω), f̂(π−1(π(e))) is a n-plane from the

assumption, so we can define the bundle map f(e) = (f̂(π−1(π(e))), f̂(e)).

We can choose a countable open cover (Um) of B(ω) such that the restrictions ω|Um
are trivial.[5,

p. 66]. We choose a partition of unity (ψm) of (Um) [2, p. 43]. Since the bundle is trivial over these

subsets, we can define maps hm by π−1(Um)
∼−→ Um×Cn p−→ Cn, where the first map is a trivilization

of (Um). Combining this with our partition, we get a map

h′m(e) =

{
ψm(e) · hm(e) e ∈ π−1(Um)

0 else

We can now define the map f̂ : E(ξ) → (Cn)∞ ∼= C∞ by f̂m(e) = h′m(e). Each h′m is linear on
fibers, and for each fiber there exist h′m which is injective. Lastly only finitely many of the maps are
non-zero over a point, ensuring that each fiber is mapped to a plane in Ca for a large enough. This
shows the existence of f̂ finishing the proof.

For the next lemma we will need the notion of a bundle homotopy

Definition 5.5 (Bundle homotopy). If we have two bundle maps (a, b) and (c, d) from ξ to η then a
bundle homotopy between them is a map

E(ξ)× I E(η)

B(ξ)× I B(η),

h

g

such that (h(−, t), g(−, t)) is a bundle map for each t ∈ I and (h(−, 0), g(−, 0)) = (a, b) and (h(−, 1), g(−, 1)) =
(c, d)

Lemma 5.6. Two bundle maps from the same bundle to the tautological bundle are bundle-homotopic.

Proof. Let f, g be two bundle maps from a bundle ω to γn. We use again that a bundle map determines
a map f̂ : E(ω) → C∞ linear and injective on fibers. If f̂ and ĝ are never negative multiples of each

other, then the map ĥ : E(ω)× I → C∞ given by

ĥ(e, t) = t · f̂(e) + (1− t) · ĝ(e),

is for every t ∈ I, injective on fibers, since the vectors are never negative multiples of each other.
This gives a bundle homotopy h(e, i) = (ĥi(π

−1(π(e))), ĥi(e)).

We can reduce the general case to this special case, by modifying our maps. First we define two
bundle maps d1, d2 : γn → γn. These are also induced by maps d̂1, d̂2 : C∞ → C∞ where d̂1 sends
the i-th coordinate to (2i− 1)-th and d̂2 sending it to 2i-th and leaving the rest 0.

If f̂(e) ̸= 0 assume the last non-zero coordinate is in index m. Then the last non-zero coordinate in

d̂1 ◦ f̂(e) is in the 2m − 1-th index, and in the 2m-th index for d̂2 ◦ f̂(e), so the vectors cannot be

negative multiples of each other. Also for any bundle maps f and g, the bundle maps d̂1 ◦ f̂(e) and
d̂2 ◦ ĝ(e) are not negative multiples of each other since, one is only non-zero in odd indexes and the
other only in even indexes. We can now use our first part to conclude that

f ∼ d1 ◦ f ∼ d2 ◦ g ∼ g.

so f and g are bundle homotopic.
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Proof of Theorem 5.3. The fact that every complex n-bundle has an unique bundle map into the
tautological bundle up to homotopy, let us define a map ψ : BC

n(M) → [M,Gn(C∞)] which sends a
bundle ω to the homotopy class of the map of base spaces of a bundle map ω → γn.
The map has an inverse sending a map to the pullback bundle of the map. Indeed this is well defined
since homotopic maps leads isomorphic bundles[4, p. 184].
Since the pullback bundle comes attached with a bundle map

E(f∗γn) E(γn)

B Gn(C∞),
f

(2)

we get the same map on base space we started with, which shows ψ ◦ϕ = Id[M,Gn(C∞)]. For the other
direction, since a bundle ω is isomorphic to the pullback bundle f∗(γn) for some f , if there exists a
bundle map (g, f) : ω → γn it will get send to the same isomorphism class, showing ψ ◦ϕ = IdBC

n(M),

such that BC
n(M), [M,Gn(C∞)] are isomorphic.

5.1 Naturality

We have established a bijection between the sets, however we can upgrade this to a natural isomor-
phism. BC

n(−) is a contravariant functor from the category of paracompact spaces to the category of
sets, sending each space to the set of isomorphism classes of complex n-bundles over it, with maps
given by sending isomorphism classes of a bundle to the isomorphism class of the pullback bundle
over the map.
[−, Gn(C∞)] is also a contravariant functor with the same source and target category, when restricted
to paracompact spaces.

We have to check the isomorphism between these is natural. So we check the diagram for a map
f : A→ B

BC
n(B) [B,Gn(C∞)]

BC
n(A) [A,Gn(C∞)]

f∗

hB

◦f

hA

(3)

commutes. Let [ω] ∈ BC
n(B) and choose a representative of [ω] which is a pullback bundle over a map

h : B → Gn(C∞). For f : A→ B we have the following diagram

E((h ◦ f)∗(γn)) E(h∗(γn)) E(γn)

A B Gn(C∞).
f h

(4)

The first direction (◦f) ◦hB in our naturality diagram, sends the class [ω] to the class of map [h] and
then composing with f , [h ◦ f ].
The second direction (f∗), sends the class [h∗(ω)] to the class [(h ◦ f)∗(γn))]. Then applying hA,
[(h ◦ f)∗(γn))] get send to the homotopy class of the map of base spaces of a bundle map, which is
[h ◦ f ]. This shows the diagram commutes and therefore the functors are naturally isomorphic.

6 Thom Isomorphism

We will here describe a relation between cohomology of the base space and the cohomology of the
total space of a vector bundle. For every bundle ξ, there is a deformation retraction from the total
space E to the image of the zero section, which is homeomorphic to the base space B. Therefore
E and B are homotopy equivalent and Hi(B) ∼= Hi(E), but for relative cohomology we get a more
interesting isomorphism.

Notation 6.1. If E is the total space of a vector bundle ξ over B, then we denote by E0 the
complement of the image of the zero section in E, and if V is any vector space, then V0 denotes the
subspace of non-zero elements of V .
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Theorem 6.2 (Thom Isomorphism). Given a n-bundle ξ, there is an unique u ∈ Hn(E,E0;Z2),
such that for every fiber F, the inclusion (F, F0) ↪−→ (E,E0) on cohomology

Hn(E,E0;Z2) → Hn(F, F0;Z2) ∼= Z2,

sends u to the generator Hn(F, F0;Z2).
Furthermore, the map induced by the cup product with u, gives an isomorphism

Hj(B;Z2) ∼= Hj(E;Z2) → Hj+n(E,E0;Z2)

As in our previous constructions involving cohomology and unoriented bundles, the construction
is done with Z2. For oriented bundles we have a Thom isomorphism with Z coefficients.

Theorem 6.3 (Oriented Thom Isomorphism). Let ξ be an oriented n-bundle over B. Then there is a
unique u ∈ Hn(E,E0;Z), such that for every fiber F, the inclusion (F, F0) ↪−→ (E,E0) on cohomology

Hn(E,E0;Z) → Hn(F, F0;Z) ∼= Z,

sends u to the generator of Hn(F, F0;Z) given by the orientation.
Furthermore, the map induced by the cup product with u gives an isomorphism

Hj(B;Z) ∼= Hj(E;Z) → Hj+n(E,E0;Z).

Notation 6.4. The element u satisfying the condition of the Thom Isomorphism in both cases, will
be called the Thom class. If we want to stress the bundle ξ the Thom class belongs to, we will denote
it uξ.

We will prove the theorem in the oriented case and only for compact spaces, but note it holds for
all spaces. From now on in this section all cohomology groups will have coefficients in Z. In the case
of an oriented trivial bundle we can prove the theorem by considerations of long exact sequences. We
denote by R+,R− the set of positive and negative real numbers respectively.

We have the long exact sequence associated to the triple (B × R, B × R0, B × R−). Since B × R
is homotopy equivalent to B × R−, we have Hi(B × R, B ×R−) = 0 for all i, and so

∂ : Hi(B × R0, B × R−) → Hi+1(B × R, B × R0)

is an isomorphism for all i, using the long exact sequence. From excision we also have an isomorphism

Hi(B × R0, B × R−) ∼= Hi(B × R+) ∼= Hi(B).

In the special case of B = ∗, we can combine our two isomorphisms

H1(R,R0) ∼= H0(R0,R−) ∼= H0(∗).

We let e ∈ H1(R,R0) be the element, that is the image of 1 ∈ H0(R+) in the above isomorphism.
We have the product e× e× ...× e = en ∈ Hn(Rn,Rn0 ). Here Rn0 is the vector space Rn without the
zero vector.

Lemma 6.5. For a space B and a subspace A, the map ϕ : Hj(B,A) → Hj+1(B×R, B×R0∪A×R),
given by ϕ(a) = a× e is an isomorphism for all j.

Proof. We will first prove the case A = ∅. For any a ∈ Hm(B) we get a commutative diagram based
on our considerations above

H0(R+) H0(R0,R−) H1(R,R0)

Hm(B × R+) ∼= Hm(B) Hm(B × R0, B × R−) Hm+1(B × R, B × R0).

a×

i∗ ∂∗

a× a×

i′∗ ∂′∗

The two left horizontal maps are excision isomorphisms, while the two right horizontal maps are
∂∗, ∂′∗, which we showed above are isomorphisms. Going through the diagram with the element
e ∈ H1(R,R0)

1 e′ e

a a× e′ a× e,

a×

i∗ ∂∗

a× a×

i′∗ ∂′∗
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we get that (∂′∗ ◦ (i′∗)−1) is an isomorphism sending a to a× e. Since this works for all elements of
Hm(B) for all m ∈ N, the map a→ a× e is equal to the isomorphism (∂′∗ ◦ (i′∗)−1).

For the general case we have the diagram

Hm−1(A) Hm(B,A) Hm(B)

Hm(A× R, A× R0) Hm(B × R, B × R0 ∪A× R) Hm+1(B × R, B × R0).

×e

δ

×e ×e

δ

As the previous case shows ϕ : Hj(B) → Hj+1(B×R, B×R0) and ϕ : Hj(A) → Hj+1(A×R, A×R0)
are isomorphisms for every j, so by the 5-lemma the middle map is also an isomorphism.

Using this isomorphism iteratively, we have the composition ϕ : Hj(B) → Hj+n(B×Rn, B×Rn0 )
given by ϕ(a) = a× en is an isomorphism.

We are now ready to prove Thom’s isomorphism theorem. We will first show it for the special
case of oriented trivial bundles, and then gradually build up to general oriented bundles.

Proof of Theorem 6.3. In the case of trivial oriented bundle ξ with total space E ∼= B ×Rn, we have
on cohomology

Hn(E,E0) ∼= Hn(B × Rn, B × Rn0 ) ∼= H0(B),

by our previous lemma. We have for every fiber the commutative diagram.

H0(B) Hn(E,E0)

H0(∗) Hn(F, F0).

×en

i∗ i∗

×en

This shows that finding an element of Hn(E,E0), that maps to the oriented generator for the in-
clusion of a fiber, corresponds to finding an element of H0(B) which maps to 1 for the inclusion of
a point. Since only 1 ∈ H0(B) has this property, we have u = 1 × en is the unique element which
satisfies the condition of a Thom class.
To see it induces isomorphism by the cup product, note that all elements of Hj(B×Rn), can be writ-
ten as y×1 for y ∈ Hj(B). Again using our previous lemma, the map y×1 → (y×1)∪(1×en) = y×en
is an isomorphism.

Now suppose that we have an oriented bundle ξ over B = B′ ∪ B′′, where Thom’s isomorphism
is true when the bundle is restricted to either B′, B′′ or B′ ∩ B′′. We denote B′ ∩ B′′ by B∩,
and the total spaces of ξ|B′ , ξ|B′′ , ξ|B∩ by E′, E′′, E∩ respectively. Associated to the triple of pairs
((E,E0), (E

′, E′
0), (E

′′, E′′
0 )) we have the Mayer-Vietoris sequence

Hi−1(E∩, E∩
0 ) Hi(E,E0) Hi(E′, E′

0)⊕Hi(E′′, E′′
0 ) Hi(E∩, E∩

0 ).
ψ ϕ

Since the statement is true for E′, E′′, E∩, we have unique elements u′ ∈ Hn(E′, E′
0), u

′′ ∈ Hn(E′′, E′′
0 )

and u∩ ∈ Hn(E∩, E∩
0 ) which are Thom classes.

For every fiber in E′∩E′′, we have the inclusion (F, F0) ↪−→ (E∩, E∩
0 ) ↪−→ (E′, E′

0), so H
n(E′, E′

0) →
Hn(E∩, E∩

0 ) → Hn(F, F0). Since u∩ ∈ Hn(E∩, E∩
0 ) is the unique element mapping to the oriented

generator of Hn(F, F0) for all fibers, u′ must map to u∩ by the map induced by the inclusion, and
similarly u′′ must map to u∩ by the map induced from the inclusion.

Therefore ϕ(u′, u′′) = u∩ − u∩ = 0 . From exactness there exist u ∈ Hi(E,E0), with ψ(u) =
(u′, u′′). ψ(u) = (u′, u′′) is necessary and sufficient for u being a Thom class, since every fiber of
E is contained in either E′ or E′′, and u′, u′′ are the only elements which will map to the oriented
generators.
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Using that Thom’s isomorphism theorem hold for ξ|B∩ , we have Hn−1(E∩, E∩
0 )

∼= H−1(B∩) = 0.
From the above exact sequence it follows that ψ is injective, so u is the unique element mapping to
(u′, u′′) through ψ.

We are left to prove that the cup product gives an isomorphism. This follows since the cup product
induce a map between the two Mayer-Vietoris sequences

Hi−1−n(E∩) Hi−n(E) Hi−n(E′)⊕Hi−n(E′′)

Hi−1(E∩, E∩
0 ) Hi(E,E0) Hi(E′, E′

0)⊕Hi(E′′, E′′
0 ).

∪u ∪u ∪u

ψ

Lastly we prove the result for compact spaces. If ξ is an oriented bundle on a compact space B,
we can find a finite cover U1, ..., Un of B such that ξ|Ui

is trivial for all Ui. Note that the bundle
must also be trivial on the intersections of Ui, since they are restrictions of trivial bundles. We prove
inductively that Thom’s isomorphism is true for ξ|U1∪...∪Um

. Since ξ|U1
is trivial, Thom’s isomorphism

is true in this case.
If we assume it is true for ξ|U1∪...∪Um−1

, we have U1 ∪ ... ∪ Um = (U1 ∪ ... ∪ Um−1) ∪ Um, and since
we know it is true for both sets in the union, and also true for the intersection since it is trivial, the
result must be true for ξ|U1∪...∪Um

, so Thom isomorphism theorem is also true for ξ.

We have now proved the statement for all compact spaces, the proof for the general case can be
found here[5, p. 110].

7 Stiefel-Whitney Classes

We can now define characteristic classes of vector bundles.

Definition 7.1 (Characteristic Classes). A characteristic class a of unoriented n-bundles in degree q
with coefficient group π, is a natural transformation Bn(−) → Hq(−, π). Explicitly it sends a vector
bundle ξ over a space B, to an element a(ξ) ∈ Hq(B, π). Oriented characteristic classes are defined
the same way with source functor B+

n , and for complex characteristic classes with source functor BC
n.

From our natural isomorphism Bn(−)
iso
⇝ [−, Gn(R∞)], Bn(−) is a representable functor, so from

the Yoneda lemma we get a bijection between natural transformations in degree q with coefficients
π and Hq(Gn(R∞), π). It follows that we can classify unoriented characteristic classes by studying
Hq(Gn(R∞), π), and similarly for oriented and complex characteristic classes with G̃n(R∞), Gn(C∞)
respectively.

7.1 Stiefel-Whitney classes

We are now ready to define our first characteristic class defined for all dimensions and degrees.

Definition 7.2 (Stiefel-Whitney classes). The Stiefel-Whitney wi class of an unoriented bundle is
of degree i with coefficients Z2. It upholds the axioms
1) w0(ξ) = 1 and wi(ξ) = 0 for i > n if ξ is a n-plane bundle.
2) wi(ξ ⊕ η) =

∑n
j wj(ξ)⊕ wi−j(η)

3) w1(γ1) is non-zero, where γ1 is the tautological line bundle over RP∞

The Stiefel-Whitney classes are defined uniquely from these axioms.[5, p. 86]
Given a graded ring A, we let AΠ be the set of sequences (an)n∈N0 where an is of degree n and

a0 = 1. It is a ring with degree-wise addition, and multiplication given by

(1 + a1 + a2 + ...)(1 + b1 + b2 + ...) = 1 + (a1 + b1) + (a1b1 + a2 + b2) + ...

Applying this to (H∗(B,Z2))
Π, we can define the total Stiefel-Whitney class w = (wi)i∈N0 ∈

(H∗(B,Z2))
Π. This gives us an easier product rule w(ξ ⊕ η) = w(ξ)w(η). We can now calculate the

Stiefel Whitney classes of some examples.
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The trivial bundle has total class w(ϵn) = 1, since it is the pullback bundle of a n-bundle over a
point, which has no cohomology in dimensions higher than 0.
If we take the Whitney sum of the tangent bundle of Sn with the outward pointing vector field in the
embedding Sn ↪−→ Rn+1, we get the trivial (n+1)-bundle. It follows w(τn) = w(τn⊕ϵ) = w(ϵn+1) = 1
on the n-sphere.
This example shows the Stiefel-Whitney classes does not give us all information about vector bundles,
as not all tangent bundles of spheres are trivial. In the limited case of 1-bundles they do however
classify all bundles.

Theorem 7.3. w1 gives a natural isomorphism between B1(−) and H1(−,Z2).

Proof. We have the surprising fact, that RP∞ is not only the classifying space of 1-bundles but also

the Eilenberg-MacLane space K(Z2, 1), giving us that H1(−,Z2)
iso
⇝ [−,RP∞]. It follows we have

[−,RP∞]
iso
⇝ B1(−)

w1⇝ H1(−,Z2)
iso
⇝ [−,RP∞]

From the Yoneda lemma, we only have to show that IdRP∞ gets sent to itself, to see this natural
transformation is the identity, which will imply w1 is a natural isomorphism.

First IdRP∞ corresponds to γ1, since (IdRP∞)∗(γ1) = γ1. From our assumption that w1(γ
1) is

non-zero, it must be the unit of H1(RP∞) since it is isomorphic to Z2. Composing with H1(−,Z2)
iso
⇝

[−,RP∞] it sends the identity to the identity map IdRP∞ , showing the whole natural transformation
to be the identity. This shows that w1 is a natural isomorphism.

7.2 Calculation of w(τn) for RPn

The calculation of the characteristic classes of the tangent bundles of RPn and CPn will be an
important piece in uncovering the question of cobordisms.
As in the calculation of Stiefel-Whitney classes of the tangent bundle of Sn, we can take Whitney
sums to get another bundle whose characteristic class we already now. Note that given two bundles
ξ, η over the same base space, we can get a new bundle hom(ξ, η), which on fibers b ∈ B is the vector
space hom(ξb, ηb). The proof that this defines a bundle can be found here[5, p. 31]. Note that as
the fibers of γ1n is a n-plane inside Rn+1, we have γ1n is a subbundle of ϵn+1, and so we have the
orthogonal bundle of this inclusion γ1⊥n .

Lemma 7.4. The tangent bundle τn on RPn is isomorphic to hom(γ1n, γ
1⊥
n )

Proof. [5, p. 43 ].

The following lemma extends two properties of hom from vector spaces to vector bundles.

Lemma 7.5. For every bundle ξ over a paracompact space hom(ξ, ϵ) ∼= ξ and hom(ξ, ξ) ∼= ϵ if ξ is a
1-bundle.

Proof. We have hom(ξb, ϵb) ∼= ξb is isomorphic as vector spaces but the isomorphism is not canonical.
However since the vector bundle can be given an euclidean structure, we have the musical4 isomor-
phism ξb → hom(ξb, ϵb) by v → ⟨−, v⟩. Since an inner product is positive definite and linear, it gives
a canonical isomorphism, which then can be extended to an isomorphism ξ ∼= hom(ξ, ϵ). Note that
the isomorphism depends on the choice of euclidean structure.

Assuming ξ is a 1-bundle, hom(ξ, ξ) ∼= ϵ since it is a 1-bundle with non-zero section given by the
identity map on fibers.

Theorem 7.6. The tangent bundle τn on RP∞ has the relation τn ⊕ ϵ ∼= (γ1n)
n+1.

Proof. From our lemmas we get

τn ⊕ ϵ ∼= hom(γ1n, γ
1⊥
n )⊕ hom(γ1n, γ

1
n)

∼= hom(γ1n, γ
1
n ⊕ γ1⊥n ) ∼= hom(γ1n, ϵ

n+1)

4An explanation of the name can be found here[2, p. 342].
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This can again be split into n+ 1 bundles

∼= hom(γ1n, ϵ)
n+1 ∼= (γ1n)

n+1

We can now calculate w(τn) by

w(τn) = w(γ1n)
n+1 = (1 + a)n+1,

where a is the nonzero element in H1(RPn,Z2).
From this we can conclude some real projective spaces can not be parallelizable.

Corollary 7.7. The only real projective space which can be parallelizable is RPn, where n = 2k − 1
for some integer k.

Proof. In the case n = 2k − 1 we have w(τ) = (1 + a)n+1 = (1 + a)2
k

. Using that (1 + a)2 = 1 + a2

in modulo 2 inductively, we get w(τ) = (1 + a)n+1 = (1 + a)2
k

= 1 + a2
k

= 1 since an+1 = 0.

If n = 2km − 1 with m odd and at greater than 2, we have w(τ) = (1 + a)2
km = (1 + a2

k

)m =

1 +ma2
k

...+ma2
k(m−1). Since m, the first and last coefficient is non-zero.

Therefore the Stiefel-Whitney class only agree with the trivial bundle when n = 2k − 1.

7.3 Stiefel-Whitney Numbers

Since the Stiefel Whitney classes are elements of the cohomology, we can try and evaluate homology
on the classes. Specifically since any manifold is Z2-orientable, we have for a compact manifold a
fundamental class [M ] ∈ Hn(M ;Z2), which we can evaluate on[4, p. 155 ].

Definition 7.8 (Stiefel-Whitney Number). Given a compact n-manifold and an unordered partition
J = i1i2...im of n into positive integers, the J-th Stiefel-Whitney number is

⟨wi1(τn)wi2(τn) · · ·wim(τn), [M ]⟩ ∈ Z2,

where ⟨, ⟩ is the evaluation of cohomology on homology.

The Stiefel-Whitney numbers are invariants of manifolds, and they will give us our first connection
between the theory of vector bundles and cobordisms, seen by the next theorem.

Theorem 7.9. If a compact manifold is nul-cobordant then all of its Stiefel-Whitney numbers are 0.

Proof. Assume that a compact manifold M is a boundary of a compact manifold W with boundary.
Then there exist a fundamental class [W ] ∈ Hn+1(W,M ;Z2) such that ∂[W ] = [M ][4, p. 168 ].

We would like to induce the Stiefel-Whitney classes of the tangent bundle on M by the map
i : M → W but the inclusion of tangent bundles does not give a bundle map. However since every
tangent bundle has an outward pointing vector field on the boundary, there exist a trivial subbundle
of dimension 1 which is in direct sum with τn. It follows that we have a bundle map

E(τnM ⊕ ϵ1) E(τnW )

M W,i

and so i∗(wj(τ
n+1
W )) = wj(τ

n
M ⊕ ϵ1) = wj(τ

n
M ).

From this we have the calculation of the J-th Stiefel-Whitney number

⟨wi1(τnM )wi2(τ
n
M ) · · ·wim(τnM ), ∂∗([W ])⟩ = ⟨i∗(wi1(τn+1

W )wi2(τ
n+1
W ) · · ·wim(τn+1

W )), ∂∗([W ])⟩

= ⟨wi1(τn+1
W )wi2(τ

n+1
W ) · · ·wim(τn+1

W ), (i∗ ◦ ∂)([W ])⟩ = 0.

Since (i ◦ ∂)∗ = 0 from the long exact sequence

Hn+1(W,M ;Z2) Hn(M ;Z2) Hn(W ;Z2).
∂ i∗
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Actually the reverse implication is also true; a manifold is nul-cobordant if all of the Stiefel-
Whitney numbers are 05[4, p. 228].

7.4 Euler Class

For oriented bundles we get a characteristic class from the oriented Thom isomorphism.

Definition 7.10 (Euler Class). Let ξ be an oriented bundle with fundamental cohomology class
u ∈ Hn(E,E0). The image of u along the map Hn(E,E0) → Hn(E) ∼= Hn(B) is the Euler class u|E
denoted e(ξ).

This construction is natural, since if we have a oriented bundle map (g, f) from ξ to η then we
have a diagram of oriented maps for every x ∈ B(ξ)

(F (ξ), F (ξ)0) (F (η), F (η)0)

(E(ξ), E(ξ)0) (E(η), E(η)0).

ix

(g|F ,g|F0
)

if(x)

(g,g0)

From this we get i∗x(g
∗(uη)) is the oriented generator of Hn(F (ξ), F (ξ)0) for every x ∈ B(ξ), so from

uniqueness of the Thom class we have g∗(uη) = uξ.

As with Stiefel-Whitney classes, Euler classes are multiplicative in the sense e(ξ ⊕ η) = e(ξ)e(η),
and if ξ has a non-zero section then e(ξ) = 0[5, p. 98].
As with Stiefel-Whitney numbers, for an oriented n-manifold M we have the number ⟨e(τM ), µ⟩,
where µ ∈ Hn(M,Z) is the fundamental class. Even though ⟨e(τM ), µ⟩ is constructed using the
smooth structure of M , it can be shown that it coincides with the Euler characteristic of M [5, p.
130], which explains the name of the characteristic class.

8 Chern Classes

The most important characteristic classes of complex vector bundles are the Chern classes ci. To
construct Chern classes we first construct a way to get a (n− 1)-bundle from a n-bundle.

Definition 8.1. Let ω be a complex n-bundle. For v ∈ E0, let Fπ(v) be the fiber of π(v) in ω.
Then ω0 is a (n− 1)-bundle on E0(ω), with fiber of v ∈ E0 being Fπ(v)/(Cv), where Cv is the linear
subspace spanned by v in E.

We have for an oriented 2n-bundle the Gysin sequence, obtained by combining the long exact
sequence of (E,E0) with the Thom isomorphism theorem.

Hi−2n(B) Hi(B) Hi(E0) Hi−2n+1(B)
∪e(ω) π∗

0

For i < 2n− 1 the outer groups are 0, so we get isomorphisms. We can now define Chern classes.

Definition 8.2 (Chern Classes). We define Chern classes inductively on the dimension on the bundle.
For a complex n-bundle ω, ci = 0 for i > n and cn = e(ω) ∈ H2n(B). Since complex bundles are
oriented this makes sense. For i < n, ci(ω) = π−1

0 (ci(ω0)) ∈ H2i(B) from the inductive assumption.

Lemma 8.3. The construction of Chern classes is natural, explicitly if there is a bundle map ω → ω′

over a map g : B → B′, then g∗(ci(ω
′)) = ci(ω) for any i.

Proof. We will proceed by induction.
For 1-bundles it is true since the only Chern class c1 is the Euler class, which we know is natural.
Assuming it is true for dimension lower than n, let ω, ω′ be n-bundles with a bundle map (f, g).
For v ∈ E0(ω) with π(v) = b the map

fv : Fb/(Cv) → Fg(b)/(Cf(v))
5The same idea as here, will be used later in our discussion of oriented cobordism.
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given by the restriction of f to the fiber b along with taking quotients, is linear and bijective. Let
f ′ : E(ω0) → E(ω′

0) be the map induced by fv on the fiber v ∈ E(ω0). Then (f ′, f|E0(ω)) is a bundle
map of (n−1)-bundles. From the induction assumption we have ci(ω0) = f ′∗(ω′

0). From the diagram

Hi(E0(ω)) Hi(E0(ω
′))

Hi(B(ω)) Hi(B(ω′)),

f ′∗

π∗
0

g∗

π∗
0

we get that ci(ω0) = π∗−1
0 (f ′∗(ci(ω

′
0))) = g∗(ci(ω

′), showing naturality.

As with Stiefel-Whitney classes, the Chern classes of the trivial complex bundles are 0, since we
have a bundle map over the map to a point.
We have the total Chern class

1 + c1(ω) + c2(ω) + ...+ cn(ω),

which also has a product rule c(ω ⊕ ω′) = c(ω)c(ω′)[5, p. 164]. For a complex bundle ω, the Chern
classes of ω are given by ci(ω) = (−1)ick(ω) [5, p. 168]. Under the coefficient change in cohomology
Z → Z2, the total Chern class get mapped to the total Stiefel-Whitney class, in particular ci get send
to w2i [5, p. 171].

8.1 Calculations for the CPn

Even though the definition of Chern classes is hard to wrap your head around, we can still make
calculations by finding the Euler class, which we have different tools to deal with, and by using Chern
classes are multiplicative. The tautological bundle and the tangent bundle on CPn illustrates this
approach. First we will look at the tautological bundle γ1n on CPn.

Since the bundle is 1-dimensional, the only possible non-zero Chern class is c1(γ
1
n) = e(γ1n). Again

we have the Gysin sequence

Hi−1(E0) Hi−2(CPn) Hi(CPn) Hi(E0).
∪e(γ1

n) π∗
0

Note that E0 consists of (l, v), where l is a 1-dimensional subspace in Cn+1 and v is a non-
zero vector with v ∈ l. As every non-zero vector in Cn+1 only lies in one complex line, we have
E0

∼= Cn+1 − 0 ≃ S2n+1. Using this, our sequence becomes

0 Hi(CPn) Hi+2(CPn) 0,
∪e(γ1

n) π∗
0

when 2 ≤ i ≤ 2n. It follows that Z ∼= H0(CPn) ∼= H2i(CPn) for 0 ≤ i ≤ n and that H2i(CPn) has
generator e(γ1n)

i ∈ H2i(CPn). For odd degrees we have 0 ∼= H−1(CPn) ∼= H2i−1(CPn) for 0 ≤ i ≤ n,
and since CPn is a 2n-dimensional manifold, cohomology vanishes in every other degree. By the
inclusions CPn → CP∞ we get isomorphism on cohomoloy degree less than 2n, so letting n to to
∞ we get that H∗(CP∞) is the free polynomial ring generated by the Euler class of the tautological
bundle.

For the tangent bundle, by a similar argument to Theorem 7.6, we get the relation τ2n ⊕ ϵ ∼=
(γ1n)

n+1 and by the product rule we then have

c(τ2n) = c(τ2n ⊕ ϵ) = c(γ1n)
n+1 = (1− e(γ1n))

n+1 = (1 + a)n+1,

where a = −e(γ1n), so ci(τ2n) =
(
n+1
i

)
e(γ1n)

i.
Thus e(τ2n) = (n+ 1)an, and using that ⟨e(τ2n), µ⟩ = χ(CP2n) = n+ 1, we get that ⟨an, µ⟩ = 1, so
an is the oriented generator of CP2n.

Lastly we will note that the calculation of cohomology of complex projective space generalizes to
Grassmannians in higher dimension.

Theorem 8.4. For Gn(C∞) we have H∗(Gn(C∞)) is the free polynomial ring generated by c1(γ
n), c2(γ

n), ..., cn(γ
n).

The proof can be found here[5, p. 161].
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9 Pontryagin Classes

While the Chern classes is only defined for complex bundles, we can use them to define the Pontryagin
classes for all real bundles.

Recall that by complexification we can turn every real bundle into a complex bundle. A natural
construction would then be to take Chern classes of the complexification of a bundle ξ. However from
Lemma 4.17 we know that

ci(ξ ⊗ C) = ci(ξ ⊗ C) = (−1)ici(ξ ⊗ C)

So when i is odd, ci(ξ⊗C) is an element of order 2. We will instead focus on the even Chern classes,
which can be of infinite order.

Definition 9.1 (Pontryagin Classes). For a n-bundle ξ, the i’th Pontryagin classes is (−1)ic2i(ξ ⊗
C) ∈ Hi(B,Z), with a sign introduced to make later statements easier to write.

As with previous cases we have the total Pontryagin class for an n-bundle

p(ξ) = p0(ξ) + p1(ξ) + ...+ p⌊n/2⌋(ξ)

As the Pontryagin Classes are constructed from Chern classes, they have a lot of the same properties,
when the information lost by the odd Chern classes are disregarded.

As the complexification of a trivial -bundle ϵn is the trivial complex n-bundle, we have p0(ϵ
n) = 1

and pi(ϵ
n) = 0 in every other degree. We also have (ξ ⊕ η)⊗ C ∼= (ξ ⊗ C)⊕ (η ⊗ C), so we get

pi(ξ ⊕ η) = (−1)ic2i((ξ ⊗ C)⊕ (η ⊗ C)) = (−1)i
2i∑
j=0

c2i−j(ξ ⊗ C)cj(η ⊗ C)

We let a be the part of the sum
∑i−1
j=0 c2i−(2j+1)(ξ ⊗ C)c2j+1(η ⊗ C). since each c2i−(2j+1)(ξ ⊗

C)c2j+1(η ⊗ C) is a product of two odd Chern classes, the sum has order two. Using (−1)i =
(−1)j(−1)i−j we have

a+

i∑
j=0

(−1)i−jc2(i−j)(ξ ⊗ C)(−1)jc2j(η ⊗ C) = a+

i∑
j=0

pi−j(ξ)pj(η)

Showing we have a product rule for Pontryagin classes up to an element of order 2. Even though this
is weaker than our earlier product rules, we can take the coefficients in Q to remove the torsion from
the product rule.

When we take the Pontryagin class of a complex n-bundle ω, we can use Lemma 4.18 together
with the calculation of Chern classes of conjugate bundles.

(−1)ipi(ω) = ci(ω ⊗ C) = ci(ω ⊕ ω) =

i∑
j=0

ci−j(ω)(−1)jcj(ω)

Taking the sum of these we get

n∑
i=0

(−1)ipi(ω) =

n∑
i=0

i∑
j=0

ci−j(ω)(−1)jcj(ω) =

(
n∑
i=0

ci(ω)

)(
n∑
i=0

(−1)ici(ω)

)

9.1 Calculation of Pontryagin Classes

Given these tools we can calculate the Pontryagin classes of the tangent bundle on CPn, since we
know their Chern classes.

n∑
i=0

(−1)ipi(τ
n) =

(
n∑
i=0

ci(τ
n)

)(
n∑
i=0

(−1)ici(τ
n)

)
= (1+a)n+1(1−a)n+1 = (1−a2)n+1 =

n∑
i=0

(−1)i
(
n+ 1

i

)
a2i
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Removing the (−1)i from both sides we get

n∑
i=0

pi(τ
n) =

n∑
i=0

(
n+ 1

i

)
a2i

We can describe the cohomology of G̃n(R∞) with rational coefficients by the Pontryagin classes
of the tautological bundle.

Theorem 9.2. If n is odd H∗(G̃n(R∞);Q) is the free polynomial ring generated by the Pontryagin
classes

p1(γ̃
n), p2(γ̃

n), ..., p⌊n
2 ⌋(γ̃

n)

If n is even, H∗(G̃n(R∞);Q) is the free polynomial ring generated by the Pontryagin classes

p1(γ̃
n), p2(γ̃

n), ..., pn
2 −1(γ̃

n), e(γ̃n)

with e(γ̃n)2 = pn
2
(γ̃n)

The proof can be found here[5, p. 179].

10 Pontryagin Numbers

For a closed oriented n-manifold M , we have the fundamental class µM ∈ Hn(M,Z). As with Stiefel-
Whitney numbers we can pair the Pontryagin classes of the tangent bundle with µM , however as the
Pontryagin classes are elements of H4m(M), we will restrict to manifolds of dimension divisible of 4.

Definition 10.1 (Pontryagin Number). Given a compact 4n-manifold and a unordered partition
I = i1i2...im of n into positive integers, the I-th Pontryagin number is

⟨pi1(τ4n)pi2(τ4n) · · · pim(τ4n), [M ]⟩ ∈ Z,

where ⟨, ⟩ is the evaluation on cohomology on homology.

The Pontryagin number are additive with respect to disjoint union, since Pontryagin classes and
fundamental classes of a disjoint union are equal to the sum of their parts, and for any pair of
manifolds M,M ′

⟨pi1(τ4nM )pi2(τ
4n
M ) · · · pim(τ4nM ), [M ′]⟩ = 0

Inside M ⨿M ′.
These numbers are powerful invariants of oriented closed manifolds, and from the following theorem
they respect cobordisms.

Theorem 10.2. If a closed oriented manifold is oriented nul-cobordant then all of its Pontryagin
numbers are 0.

Proof. The proof is similar to the one given for Stiefel-Whitney numbers. Assume that an oriented
closed manifold M is the boundary of an oriented compact manifold W with boundary. Then there
exist a fundamental class [W ] ∈ Hn+1(W,M,Z) such that ∂[W ] = [M ][4, p. 170].

The Pontryagin classes of the tangent bundle on M is induced by the Pontryagin classes of W
since

E(ϵ1 ⊕ τnM ) E(τnW )

M W,i

and so i∗(pj(τ
n+1
W )) = pj(τ

n
M ⊕ ϵ1) = pj(τ

n
M ).

From this we have the calculation of the I-th Pontryagin number

⟨pi1(τnM )pi2(τ
n
M ) · · · pim(τnM ), ∂∗([W ])⟩ = ⟨i∗(pi1(τn+1

W )pi2(τ
n+1
W ) · · · pim(τn+1

W )), ∂∗([W ])⟩
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= ⟨pi1(τn+1
W )pi2(τ

n+1
W ) · · · pim(τn+1

W ), (i∗ ◦ ∂)([W ])⟩ = 0.

Since (i ◦ ∂)∗ = 0 from the long exact sequence

Hn+1(W,M) Hn(M) Hn(W ).∂ i∗

From this we get that Pontryagin numbers are group homomorphisms from Ω+
n to Z. By calculat-

ing the Pontryagin numbers of even complex projective spaces we can show they are nulcobordant.

For a partition I = i1i2...im of n, the I-th Pontryagin number of CP2n is given by

⟨pi1(τ4n)pi2(τ4n) · · · pim(τ4n), [CP2n]⟩ =
(
2n+ 1

i1

)(
2n+ 1

i2

)
· · ·
(
2n+ 1

im

)
⟨an+1, [CP2n]⟩.

Since ⟨an+1, [CP2n]⟩ = 1, the I-th Pontryagin number of CP2n is equal to
(
2n+1
i1

)(
2n+1
i2

)
· · ·
(
2n+1
im

)
.

Since the Pontryagin numbers are additive, we can conclude that [CP2n] is infinitely cyclic in Ω+
4n.

Since CP2n+1 is not of dimension divisible by 4, we can not extend the conclusion to these spaces,
and these spaces are actually nul-cobordant.

By the following theorem of Thom we can extend this result to show that the products of even
complex projective spaces generate a rank κ(n) subgroup of Ω+

4n, where κ(n) is the number of parti-
tions of n. The κ(n) products of even complex projective spaces of total dimension 4n, generate the
subgroup A ↪−→ Ω+

4n.

Theorem 10.3. Let×I,|I|=nQ be the product of Q over the partitions of n. The map

A⊗Q → ×
I,|I|=n

Q

given in the I’th coordinate by [M ]⊗ q → q · pI(M) is an isomorphism.

From this we can conclude that Ω+
4n has at least rank κ(n).

11 Pontryagin-Thom Construction

We are now ready to define the Thom space of a vector bundle.

Definition 11.1 (Thom Space). Let ξ be a smooth euclidean bundle. Then D(ξ) ⊂ E(ξ) is the
subspace consisting of the vectors v with |v| ≤ 1, and furthermore S(ξ) ⊂ D(ξ) is the subspace of
vectors v with |v| = 1. The Thom space T (ξ) is a pointed space D(ξ)/S(ξ) with basepoint t0 = [S(ξ)].

Notation 11.2. For an euclidean bundle ξ, we let D0(ξ) = E0(ξ) ∩D(ξ), S0(ξ) = E0(ξ) ∩ S(ξ) and
T0(ξ) = D0(ξ)/S0(ξ). We will just write T, T0 and so on for these constructions, when the bundle is
clear from the context.

We will note some useful facts about Thom spaces for a bundle ξ. Firstly the space T (ξ) \ {t0} is

diffeomorphic to E(ξ), by scaling vectors v by |v|
1−|v| . If ξ is over a compact space, T (ξ) is the one-point

compactification of E(ξ). The zero-section i : B → E(ξ) induces an embedding i′ : B → T (ξ) also
referred to as the zero-section of T (ξ).

We can also calculate the cohomology of T (ξ) relative to the basepoint by using the Thom iso-
morphism.

Lemma 11.3. If ξ is an oriented n-bundle over a space B, then Hn+i(T (ξ), t0) ∼= Hi(B)
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Proof. We have a deformation retract of D0 onto S0 by

h(v, t) =

(
1 + t

(
1

|v|
− 1

))
· v.

Sending the homotopy to the quotient, we get a deformation retract of T0 onto t0, which gives

Hn+i(T, t0) ∼= Hn+i(T, T0)

Using excision on the triad (T, T0, T − t0), along with the Thom isomorphism we get

Hn+i(T, T0) ∼= Hn+i(T − t0, T0 − t0) ∼= Hn+i(E,E0) ∼= Hi(B).

11.1 Manifolds from Regular Maps

Given manifolds M,N and a smooth map f : M → N between them, we are not guaranteed that
the preimage f−1(y) ∈ M of a point y ∈ N , is a smooth submanifold of M . For example the map
g : R2 → R given by g(a, b) = a2 − b2, has the preimage g−1(0) homeomorphic to R ∨R which is not
a manifold. We have however a condition, that ensures the preimage is a manifold.

Definition 11.4. Let M,N be manifolds with a smooth map f :M → N . A point y ∈ N is called a
regular value, if for every point x ∈ f−1(y) the induced map on tangent spaces

TMx TNy
Tfx

is surjective. A point in N is a critical value, if it is not regular. If X is a subset of M such that the
condition is satisfied for x ∈ f−1(y) ∩X, then y is regular throughout X.

If we have a smooth submanifold Y ⊂ N then f is transverse to Y if the map

TMx TNy TNy/TYy
Tfx

is surjective for every x ∈ f−1(Y ). We also call f transverse to Y throughout X ∈M if the condition
holds for f−1(Y ) ∩X.

If we regard a point y ∈ N as a 0-manifold, then y is a regular value of f , if and only if f is
transverse to y. If the preimage of a point or submanifold is empty, Then the condition is satisfied
vacuously.

Theorem 11.5. If M,N are manifolds of dimension m,n respectively, and Y ⊂ N is a smooth
submanifold of codimension6 k, then f−1(Y ) is a smooth submanifold also with codimension k.
For the special case of Y being a regular value, f−1(y) is a smooth submanifold of dimension m− n.

The proof can be found here[2, p. 144]. Luckily for any smooth map between manifolds regular
values are abundant.

Theorem 11.6 (Sard’s Theorem). For any smooth map f : M → N between manifolds, the critical
values are dense in N .

The proof of Sard’s theorem can be found here[2, p. 126]. The following lemma help us construct
maps into Rk regular to 0 ∈ Rk.

Lemma 11.7. Let W ⊂ Rm be an open subset, and f :W → Rk be a smooth map with 0 as a regular
value throughout a closed subset X ∈ W . Let K be a compact subset of W . There exists a smooth
map g : W → Rk, such that 0 is a regular value throughout X ∪ K, and g agrees with f outside a
compact set. Given an ϵ > 0 we can choose g, such that |f(x)− g(x)| < ϵ for any x ∈W .

6The codimension is difference between the dimension of the submanifold and the whole manifold.
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Proof. We will construct g by slightly ”pushing” f around K, such that the preimage of 0 becomes
the preimage of a regular value close to 0, while leaving the rest of the function untouched.

First given a compact setK, letK ⊂ U be a precompact neighborhood with U = K ′ and repeating
the construction K ′ ⊂ U ′ with U ′ a precompact neighborhood with U ′ = K ′′.

we choose a partition of unity ϕ, (1− ϕ) of {U ′,W −K ′} where U is a precompact neighborhood
of K with U = K ′. From this we have ϕ : W → R with ϕ = 1 in U and ϕ = 0 outside of K ′′.
Secondly from Sard’s theorem, we can choose a regular value y ∈ Rk for f close to 0. We will later
choose, how close it should be.

We can now define gy = f − y · ϕ. For k ∈ K, gy(k) = 0 if and only if f(k) = y. This show that
g−1
y (0) ∩ K = f−1(y) ∩ K, and since ϕ is constant in U , D(gy)x is surjective for x ∈ K ∩ g−1

y (0),
showing 0 is regular for gy throughout K.

However we have modified our function on X ∩K ′, so we have to make sure 0 is still regular for
gy in X ∩K ′.

Given a small 0 < δ, let Bδ = d−1
f−1(0)([0, δ)) where df−1(0) is the distance function to f−1(0). If

f−1(0) = ∅, we let Bδ = ∅. We can choose y small enough, such that g−1
y (0) ∩X ∩K ′ ⊂ Bδ for any

0 < δ.
Indeed we have X ∩ K ′ ∩ Bcδ , where B

c
δ is the complement of Bδ, is a compact set where f is

non-zero. Since it is compact, we can find ϵ such that |f(w)| > ϵ for w ∈ X ∩K ′ ∩Bcδ . But if |y| < ϵ,
we have |f(w)− gy(w)| < ϵ, so gy(w) ̸= 0 for w ∈ X ∩K ′ ∩Bcδ .

We have the continuous function A : Rk ×W → R that if m ≥ k, assigns to (y, x) ∈ Rk ×W

max
I,|I|=m−k

|det(Dgy)x,I |,

where (Dgy)x,I is the minor of (Dgy)x obtained by removing columns corresponding to the set of
indices I of length m− k. If m < k then A ≡ 0. (Dgy)x is surjective if and only if A(y, x) ̸= 0.

Since X ∩K ′ ∩ f−1(0) is compact, we have

{0} × (X ∩K ′ ∩ f−1(0)) ↪−→ U × V ↪−→ A−1(0,∞),

with U, V open. By compactness we can choose δ > 0 such that X ∩ K ′ ∩ Bδ ∈ V . Now choos-
ing y with small enough absolute value, we both ensure that y ∈ U and by above argument that
g−1(0) ⊂ X ∩K ′ ∩ Bδ ⊂ V . So given y satisfying this, for all w ∈ g−1

y (0) we have A(y, w) ̸= 0 and
so 0 is a regular value for gy throughout X ∪K.

11.2 Thom’s Theorem

We are now ready to describe the connection between homotopy groups of Thom spaces and cobor-
dism groups. Given a smooth euclidean n-bundle ξ over a manifold B, since T − t0 ∼= E(ξ), we can
consider it as smooth on T − t0.

Therefore if we have a continuous map g : Sm → T , we can consider it smooth on T − t0, if
the map restricted to g−1(T − t0) is smooth. From the Whitney approximation theorem, we can for
any continuous map g : Sm → T find a homotopic map g′, which is smooth on g′−1(T − t0) and
g′−1(T − t0) = g−1(T − t0)

7. If it is possible to choose g′ such that it is transverse to the zero-section
B, we get a smooth submanifold g′−1(B) ⊂ Sm of dimension m− n.

The preimage g′−1(B) is however dependent on the choice of g′ homotopic to g, but the following
theorem shows that any map g : Sm → T is homotopic to such a g′, and that g′−1(B) up to cobordism,
does not depend on the choice of g′.

7This is possible since we can choose our approximation to be closer to g as it gets closer to t0.
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Theorem 11.8. Using the notation as above, For any g : Sm → T there exist a homotopic map g′,
which is smooth on T − t0 and transverse to B. The cobordism class of g′−1(B) is invariant under
choice of homotopic map. Even further this gives a group homomorphism πm(T, t0) → Ω+

m−n.

Proof. First we will show that for any map g : Sm → T , we can find a homotopic map satisfying the
conditions. We approximate g by a map g0 as above, which is smooth throughout g−1

0 (T − t0).

Since Sm is compact, we can choose an open covering of g−1
0 (B) inside g−1

0 (T−t0) by finitely many
open charts W1,W2, ...,Wr such that π ◦ g0(Wi) ⊂ Ui, where Ui is open and the bundle is trivial over
it. Furthermore choose compact setsKi ⊂Wi such that the interior ofK1∪K2...∪Kr contains g

−1
0 (B).

We will construct maps gi inductively, by modifying the previous map gi−1 insideWi. This is done
so gi is equal to gi−1 outside of a compact subset of Wi, transverse to B throughout K1 ∪K2... ∪Ki

and lastly π ◦ g0 = π ◦ gi when restricted to T − t0.

Assume we have already constructed gi−1. Since π ◦ gi−1(Wi) = π ◦ g0(Wi) ⊂ Ui, given a
trivialization diffeomorphism ϕ of Ui, we have

ϕ ◦ gi−1 :Wi → (π ◦ gi−1)(Ui)× Rn.

We let ρi : Wi → Rn be the projection to the second factor. Note that gi−1 is transverse to B
throughout the relatively closed subset (K1 ∪K2... ∪Ki−1) ∩Wi, if and only if ρi has 0 as a regular
value throughout (K1 ∪K2... ∪Ki−1) ∩Wi.

Since Wi is diffeomorphic to a open subset of Rm, by Lemma 11.7 we get a function ρ′i which has
0 as a regular value throughout (K1∪K2...∪Ki)∩Wi, and is equal to ρi outside of a compact subset
of Wi. Therefore we can replace gi−1|Wi

by

ϕ−1 ◦ ((π ◦ gi−1)× ρ′i),

and leave everything else unchanged to get a map gi satisfying the conditions. Using this inductively
we have a map gr homotopic to g, smooth on g−1(T − t0) and having 0 as a regular value throughout
K1∪K2...∪Kr. However in the creation of gr, we might have g−1

r (B)∩ (K1∪K2...∪Kr)
c non-empty.

This can be prevented by the following argument.

Note g−1
0 (B) is inside the interior of K1 ∪K2... ∪Kr so Sm − (K1 ∪K2... ∪Kr) is contained in

a compact set where |g0| > 0. Using compactness there exists a ϵ > 0 such that |g0| > ϵ throughout
Sm − (K1 ∪K2... ∪Kr). Now by 11.7, we choose each gi such that |gi − gi−1| < ϵ

r . From this we get

|gr| ≥ |g0| − |g0 − gr| > ϵ− ϵ = 0.

So g−1
r (0) ⊂ (K1 ∪K2...∪Kr), and since 0 is regular in K1 ∪K2...∪Kr, it is regular everywhere,

showing the first part of the proof.

For the second part, assume that f, j both satisfy the assumptions and are homotopic. We will
show that f−1(B) and j−1(B) are cobordant. By the Whitney approximation theorem there is a
homotopy h0 between f, j smooth on h−1

0 (T − t0). We can furthermore stretch it in the ends such
that h0(x, t) = f(x) for x ∈ [0, 13 ] and h0(x, t) = t(x) for x ∈ [ 23 , 1].

We will now proceed as above, choosing open sets W1,W2, ...,Wr covering h−1
0 (B) ⊂ Sm × [0, 1],

and compact sets Ki ⊂Wi such that their interior also contains h−1
0 (B). Let K ′

i = Ki∩ ([ 13 ,
2
3 ]×S

m)
and W ′

i = Wi ∩ (0, 1) × Sm. Now using Lemma 11.7 on W ′
i as above, here with the relative closed

subset

W ′
i ∩
(
K1 ∪ ... ∪Ki−1 ∪

([
0,

1

3

]
× Sm

)
∪
([

2

3
, 1

]
× Sm

))
.

By an inductive argument as above, we get a homotopy h of f, j smooth on h−1(T −t0) and trans-
verse to B. It follows that h−1(B) is a smooth manifold with boundary g−1(B) ⨿ t−1(B), showing
they are cobordant.
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Lastly we need to show that this gives a group homomorphism πn(T, t0) → Ωn−m. Since the
map [g] + [j] ∈ πn(T, t0) has representative given by g on the hemisphere above the equator and
j on the lower hemisphere, the preimage will be [g−1(B) ⨿ j−1(B)] = [g−1(B)] + [j−1(B)] since
they are separated by the equator which is disjoint from h−1(B), showing that the map is a group
homomorphism.

If we assume ξ is oriented, we have an oriented version of this theorem.

Corollary 11.9. If the bundle ξ is oriented, we get a group homomorphism πm(T, t0) → Ω+
m−n.

Proof. By the previous theorem, let [g] ∈ πm(T, t0) with representative g which is smooth throughout
g−1(T − t0) and transverse to B. Recall that ξ is an euclidean bundle, so we have the normal bundle
νm of B ↪−→ T . Note that T − t0 is a tubular neighborhood of B inside T , so E(νm) ∼= T − t0 ⊂ E(ξ)
with

E(vm) T − t0

B

πνm

∼=

πξ|T−t0

Composing with the diffeomorphism T − t0 → E(ξ) by scaling vectors, we get a bundle map νm → ξ

E(vm) E(ξ)

B

πνm

∼=

πξ|T−t0

Showing that the two bundles are equivalent, and we give νm the orientation induced by orientation
of ξ by the above map.

The pullback bundle on g−1(B) through g of νm is isomorphic to the normal bundle νn of g−1(B)
inside Sm induced by a map (Dg)⊥. We give νn the orientation induced by orientation of νm by
the isomorphism. νn is then an oriented bundle inside the oriented bundle τSm|g−1(B) and since
νn ⊕ τg−1(B) = τSm|g−1(B), τg−1(B) must also be oriented, and so g−1(B) is an oriented manifold.
Using the same argument on a smooth homotopy between (g, j), we get an oriented cobordism
(h−1(B), g−1(B), f−1(B)), so the image of our map is well-defined up to oriented cobordism. As in
the unoriented case [g] + [j] ∈ πn(T, t0) get sent to [g−1(B)⨿ j−1(B)] = [g−1(B)] + [j−1(B)]

We have now established that we have a homomorphism πn(T, t0) → Ω+
n−m for every oriented

bundle ξ. The last piece of the puzzle is choosing the right bundle to get an interesting homomorphism.

Theorem 11.10. The oriented tautological bundle γ̃kp on G̃k(Rk+p) with k, p ≥ n, gives a surjection

πn+k(T (γ̃
k
p )) → Ω+

n .

Proof. Let M be a closed oriented manifold of dimension n. From the strong Whitney embedding
theorem[2, p. 135] it can be embedded Rn+k. We choose a tubular neighborhood U of M , which is
diffeomorphic to E(νk). We define a bundle map E(νk) → E(γ̃kn) by sending (x, v) to v ∈ (TxM)⊥,
where (TxM)⊥ ↪−→ Rn+k is the orthonormal space of the tangent space.
We have the following maps

U ∼= E(γ̃kn) ↪−→ E(γ̃kp ) → T (γ̃kp ),

where the last map is given by collapsing all vectors v with |v| ≥ 1 to the basepoint t0. This compo-
sition f is smooth on f−1(T − t0) and transverse to the zero section, with f−1(G̃k(Rk+p)) =M .

If we take the one-point compactification of Rn+k with ∞, we get an embedding of U in Sn+k.

We can extend the map f to f ′ : Sn+k → T (γ̃kp ) by sending Sn+k − U to t0. This map has the same
properties as above, and it preserves basepoint as ∞ get sent to t0, so we have therefore shown that
the map πn+k(T (γ̃

k
p )) → Ω+

n is surjective.

We have now obtained a surprising surjection between πn+k(T (γ̃
k
p )) and Ω+

n , but we do not know

the isomorphism type of πn+k(T (γ̃
k
p )) either. Up to torsion8 however πn+k(T ) and Hn+k(T, t0) are

8A homomorphism of abelian groups is an isomorphism up to torsion, if the kernel and cokernel is trivial.
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isomorphic for all n < k − 1[5, p. 208]. We can further compose with the Thom isomorphism
Hn+k(T, t0) → Hn(G̃k(Rk+p)), to get πn+k(T ) ∼= Hn(G̃k(Rk+p)) for n < k − 1.
If we tensor all groups withQ, we remove the torsion, and so get an isomorphism of groups. This is true
since Q is flat so tensoring with Q is an exact functor, and if the kernel and cokernel are torsion groups,
they vanish when we tensor withQ. We know that for p ≥ n,Hn(G̃k(Rk+p))⊗ZQ ∼= Hn(G̃k(Rk+p);Q)
from the universal coefficient theorem, so it is 0 if 4 ∤ n, and if n = 4r it is equal to the number of
partitions of r into positive integers denoted κ(r). Ω+

n is then a torsion group if 4 ∤ n, and has at
most rank κ(r) when n = 4r.

However the products of complex projective spaces with total dimension n generate a rank κ(r)
subgroup of Ω+

n if n = 4r as shown earlier. Therefore Ω+
n ⊗Z Q is 0 if 4 ∤ n, and has rank κ(r)

generated by all products of complex projective spaces with total dimension n if n = 4r.

We therefore get that Ω+
∗ ⊗ZQ is the free polynomial Q-algebra generated by the cobordism classes

of CP2n.

12 Multiplicative Sequence and Hirzebruchs Signature The-
orem.

Given our calculation of Ω∗
+ ⊗ Q, we can classify a ring homomorphism r : Ω∗

+ ⊗ Q → Q by the
image of [CP2n] in Q. We will describe such a ring homomorphism here. For a partition I of n we
have the I-th Pontryagin number is a group homomorphism Ω+

4n → Z. We can extend this to ring
homomorphisms by multiplicative sequences.

Definition 12.1 (Multiplicative Sequences of Q). Given a graded Q-algebra A which is commutative9

and a sequence of polynomials with coefficients in Q, {Ki(x1, ..., xi)}i∈N denoted K, with each Ki being
homogeneous of degree i, we can evaluate an element a ∈ AΠ on K by

K(a) = 1 +K1(a1) +K2(a1, a2) + ...

Then K is a multiplicative sequence if K(ab) = K(a)K(b).

Let A be the strictly commutative graded Q-algebra {H4i(B,Q)}. Then the total Pontryagin
class of a bundle ξ with Q coefficients p(ξ) ∈ {H4i(B,Q)}Π is a formal sum, and we can evaluate
such on a multiplicative sequence K to get K(p(ξ)) ∈ {H4i(B,Q)}Π.

Definition 12.2 (K-genus). For a multiplicative sequence K and an oriented closed 4n-manifold M
with fundamental class µ, the K-genus K[M ] is equal to

⟨Kn(p1(τ), p2(τ), ..., pn(τ)), µ⟩ ∈ Q,

and is equal to 0, if the dimension is not divisible by 4.

Lemma 12.3. For a multiplicative sequence K, the K-genus is a ring homomorphism from Ω+
∗ to

Q.

Proof. Since the Pontryagin numbers are a group homomorphism, we know the K-genus is additive
on Ω+

n , and so it is also additive on the direct sum Ω+
∗ .

Assuming M,N are closed orientable manifolds of dimension 4m, 4n respectively. For the product
of two manifolds [M × N ] we have τM×N = π∗

M (τM ) ⊕ π∗
N (τN ), so p(τM×N ) = p(τM ) ⊗ p(τN )

in Q coefficients. Since K is multiplicative we then have K(p(τM×N )) = K(p(τM )) × K(p(τM )).
Furthermore the fundamental class µM×N is the product µM ×µN . From this we get the calculation

⟨K(p(τM×N )), µM×N ⟩ = (−1)(4m)(4n)⟨K(p(τM )), µM ⟩⟨K(p(τN )), µN ⟩

If one of the manifolds is not of dimension divisible of 4, then both K[M ]K[N ] and K[M × N ] is
equal to 0.

9In this case we mean strictly commutative and not graded commutative.
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The following result of Hirzebruch, will give many examples of multiplicative sequences K[5, p.
221].

Lemma 12.4. Given a power series f(t) = 1 + λ1t + λ2t
2 + ... with coefficients in Q, there is an

unique associated multiplicative sequence K with coefficients in Q, such that for (1 + t) ∈ Q[t]Π we
have

K(1 + t) = f(t) ∈ Q[t]Π

For any graded symmetric Q-algebra A with a1 of degree 1, from the universal map Q[t] → A
sending t to a1 we get

K(1 + a1) = f(a1) ∈ AΠ

12.1 Signature and Hirzebruch’s Signature Theorem

We will now describe another ring homomorphism from Ω+
∗ to Q. For any oriented closed topological

manifold M of dimension 4n, we get from Poincare duality that the cup product induce a commuta-
tive nonsingular pairing in the middle cohomology H2n(M ;Q), since the middle degree is even and
H4n(M ;Q) ∼= Q by sending the oriented generator to 1. The following lemma gives us an invariant
of M .

Lemma 12.5. Given a nonsingular symmetric pairing ϕ on a vector space V , we can construct a
basis {x1, ..., xr, y1, ..., ys}, such that

ϕ(xi, xi) = 1

ϕ(yj , yj) = −1

ϕ(xi, yj) = ϕ(yj , yj′) = ϕ(xi, xi′) = 0

where i ̸= i′ and j ̸= j′. The number r − s is invariant of choice of such basis, and is denoted the
signature of ϕ.

The proof can be found here[4, p. 164]. From this we can define the signature.

Definition 12.6 (Signature of a closed oriented topological manifold). For a closed oriented topo-
logical 4n-manifold M , the signature pairing induced by the cup product in the middle degree is the
signature of M , denoted σ(M)

We can show the signature is additive with the disjoint union and multiplicative with the cartesian
product. Furthermore if M is oriented nul-cobordant then σ(M) = 0[4, p. 165]. From this we get
S : Ω+

∗ → Z is a ring homomorphism, when restricted to smooth manifolds.

The following theorem gives another expression for signature.

Theorem 12.7 (Hirzebruch’s Signature Theorem). The signature of smooth closed oriented manifold
M is equal to L[M ], where L is the multiplicative sequence associated to the power series of the

function f(t) =
√
t

tanh
√
t

1 +
1

3
t− 1

45
t2 + ...+ (−1)k−122

k

Bkt
k/(2k)! + ...

Where Bk is the k-th Bernoulli number. A description of the Bernoulli numbers can be found here
[5, p. 281].

Proof. We can check that the two maps agree on the induced maps on Ω+
∗ ⊗Q ∼= Q[CP2i|i ≥ 1], since

any torsion element of Ω+
∗ must be mapped to 0. To show the theorem, we then only have to check

on the generators CP2n.

We have the cohomology of CP2n with Z coefficients, is the polynomial ring Z[c1(γ12n)]/(c1(γ12n)n+1),
and so by the ring inclusion Z → Q we get Q[a]/a2n+1 is the cohomology ring with Q-coefficients.
We have an · an = a2n is the oriented generator of H4n(CP2n,Q), so the signature of CP2n is 1.

The total Pontryagin class of CP2n is (1+a2)2n+1, and so L((1+a2)2n+1) = L(1+a2)2n+1. Since
the L-genus is characterised by L(1 + x) = f(x) for x ∈ H4(CP2n;Q), we have L((1 + a2)2n+1) =
f(a2)2n+1. Thus we have

⟨L(p), µ⟩ = ⟨f(a2)2n+1, µ⟩.
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Since ⟨a2n, µ⟩ = 1 and 0 for every other power, we have to determine the coefficient of a2n in f(a2)2n+1.
Since a does not have any relations in powers less than 2n+1, we can replace a by a complex variable
z to calculate the coefficient of a2n. We therefore have to calculate the coefficient of z2k in the Taylor

expansion of f(z2)2n+1 =
(

z
tanh z

)2n+1
. We now use Cauchy’s integral formula for the n’th derivative

1

2πi

˛
z2n+1dz

z2n+1(tanh z)2n+1
=

1

2πi

˛
dz

(tanh z)2n+1
,

where
¸
is the integral around a loop of the origin. We now take the substitution u = tanh z. We have

du
dz = 1−u2, and using the Taylor expansion 1

1−u2 = 1+u2+u4+ ... we get dz = (1+u2+u4+ ...)du.
Since tanh z has the Taylor series

tanh z = z − 1

3
z2 + · · · ,

a loop around the origin with small enough absolute value, will get send to a loop around the origin,
so doing the substitution we get a new integral around the origin.

1

2πi

˛
(1 + u2 + u4 + ...)du

u2n+1
=

1

2πi

˛
(u−2n−1 + u−2n+1 + u−2n+3 + ...)du

By Cauchy’s residue theorem we get the integral is equal to 1, and thus L[CP2n] = 1. We have
therefore shown L equals σ on the generators of Ω+

∗ , and therefore they are equal for all closed
smooth orientable manifolds.

12.2 Consequences of the Hirzebruchs Signature Theorem

Hirzebruchs signature theorem has multiple consequences. First signature only depends on the coho-
mology ring and the choice of oriented generator of the top cohomology, so signature is invariant up
to oriented homotopy equivalence, and so it holds for L-genus also.
Furthermore the signature is always an integer, and so the L-genus is also an integer. For the specific
case of dimension 4, only the first Pontryagin class is non-zero, so p1[M ] is divisible by 3. We will
give a last example from Prof. Johannes Ebert, to see how the theorem can be used in calculations.

Corollary 12.8. The manifold Ag,n = #g(S
4n+2 × S4n+2) can only be an almost complex manifold

if g is odd.

Proof. For n, g ≥ 0 consider the manifold Ag,n = #g(S
4n+2 × S4n+2), which is the connected sum of

g copies of S4n+2 × S4n+2. For g = 0 we define it to be S4(2n+1).
First we will compute the signature of Ag,n, but since the signature is multiplicative under products
and additive under connected sum, we get σ(Ag,n) = 0, since σ(Sm) = 0 for any sphere. We will now
estimate L[Ag,n]. Assuming Ag,n has a complex structure agreeing with the standard orientation on
the tangent bundle, we have

1− p1 + p2 − ...+ p4n+2 = (1 + c1 + c2 + ...+ c4n+2)(1− c1 + c2 + ...+ c4n+2)

The cohomology of Ag,n is given by

Hm(Ag,n) =


Z m = 0

Z2g m = 4n+ 2

Z m = 8n+ 4

0 else

So all Chern classes must vanish except for c2n+1 and c4n+2 giving us

1− p1 + p2 − ...+ p4n+2 = (1 + c2n+1 + c4n+2)(1− c2n+1 + c4n+2) = 1 + 2c4n+2 − c22n+1

So the only non-vanishing Pontryagin class is p2n+1 = c22n+1 − 2c4n+2. It follows

L[Ag,n] = q · (c22n+1[Ag,n]− 2c4n+2[Ag,n]),

where q is the coefficient of pn in Ln, which is non-zero[1]. From Hirzebruch signature theorem we
get L[Ag,n] = σ(Ag,n) = 0 so c22n+1[Ag,n] = 2c4n+2[Ag,n]. Since c4n+2 is the Euler class we get
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2c4n+2[Ag,n] = 2χ(Ag,n) = 4(g+1) where χ(Ag,n) is the Euler characteristic which can be computed
from cohomology.

We have under the coefficient change Z → Z/2 the Chern class c2n+1 get send to w4n+2. We will
now show w4n+2 = 0.
We can consider Ag,n as a cellular complex with the 0-skeleton a point, the 4n+ 2 skeleton a wedge
of 2g copies of S4n+2 and a (8n+ 4)-cell attached along the spheres. The 4n+ 3 skeleton (Ag,n)4n+3

of Ag,n is then also the wedge of 2g copies of S4n+2, and since the inclusion of the 4n + 3 skeleton
induces isomorphisms on cohomology in 4n+ 2 we have

w4n+2(τAg,n
) = w4n+2((τAg,n

)|(Ag,n)4n+3
)

Since (Ag,n)4n+3 is a wedge of copies of S4n+2, the cohomology class is the sum of the class restricted
to each sphere in the wedge, so we will calculate w4n+2((τAg,n

)|S4n+2) for a sphere in the wedge
S4n+2 ↪→ (Ag,n)4n+3 ↪→ Ag,n.
By thickening the S4n+2 inside S4n+2 × I4n+2 ↪→ S4n+2 × S4n+2 ↪→ Ag,n, we see that the normal
bundle of S4n+2 is trivial so

(τAg,n)|S4n+2
∼= τS4n+2 ⊕ ϵ4n+2 ∼= ϵ8n+4

Since τS4n+2 ⊕ ϵ ∼= ϵ4n+3, so it follows w4n+2 = 0 when restricted to any sphere in the wedge, and so
(τAg,n)|(Ag,n)4n+3

) = 0 which then implies also w4n+2(τAg,n) = 0.

Since w4n+2 = 0, we must have c2n+1 = 2x for some x ∈ H4n+2(Ag,n). Choose a basis
(α1, β1, ..., αg, βg) for H

4n+2(Ag,n) with
αiβi = c

αiβj = αiαi′ = βjβj′ = 0

where c = H8n+4(Ag,n) is the oriented generator and i ̸= j. Then we have

x = a1α1 + b1β1 + ...+ a1α1 + bgβg

where ai, bi ∈ Z and

c2n+1[Ag,n] = 4x2[Ag,n] = 8(a1b1 + ...+ agbg)c[Ag,n] = 8(a1b1 + ...+ agbg).

It follows
8(a1b1 + ...+ agbg) = 4(g + 1)

So g must be odd.

The manifold A1,0 can be given a almost complex structure, since it it the product of S2 × S2,
and S2 can be given an almost complex structure since S2 ∼= CP1.
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